BER for BPSK through frequency selective fading channel using rayleighchan function and rls algorithm for adaptive equalizer

7 次查看(过去 30 天)
please help me with my project I need to measure the performance evaluation of BPSK through a three path frequency selective fading channel... I search in the help browser of the matlab and I found the following code but it doesn't work correctly.. so if you please help me and I will very thankful clear
clc
close all
k=0;
for EsNodB=27:5:27
s1=RandStream('mrg32k3a','Seed',0);
s4=RandStream('mrg32k3a','Seed',1);
s5=RandStream('mrg32k3a','Seed',2);
errcount=0;
Tsym = 1e-6; % Symbol period (s)
bitsPerSymbol = 1; % Number of bits per BPSK symbol
M = 2.^bitsPerSymbol; % BPSK alphabet size (number of modulation levels)
nPayload = 40; % Number of payload symbols
nTrain = 10; % Number of training symbols
nTail = 20; % Number of tail symbols
hStream = RandStream.create('mt19937ar', 'seed', 12345);
hStream1 = RandStream.create('mt19937ar', 'seed', 12354);
for i=1:1:1
pskmodObj = modem.pskmod(M); % modulator object
xTextSym=randi(s1, [0 M-1], 1, nPayload)
xText = modulate(pskmodObj, xTextSym)
% Training sequence symbols
xTrainSym = randi(hStream, [0 M-1], 1, nTrain);
% Modulated training sequence
xTrain = modulate(pskmodObj, xTrainSym);
% Tail sequence symbols
xTailSym = randi(hStream1, [0 M-1], 1, nTail);
% Modulated tail sequence
xTail = modulate(pskmodObj, xTailSym);
nSymFilt = 8; % Number of symbol periods spanned by each filter
osfFilt = 4; % Oversampling factor for filter (samples per symbol)
rolloff =0.25; % Rolloff factor
Tsamp = Tsym/osfFilt; % TX signal sample period (s)
orderFilt = nSymFilt*osfFilt; % Filter order (number of taps - 1) % Filter responses and structures
hTxFilt = fdesign.interpolator(osfFilt, 'Square Root Raised Cosine', ... osfFilt, 'N,Beta', orderFilt, rolloff)
hRxFilt = fdesign.decimator(osfFilt, 'Square Root Raised Cosine', ... osfFilt, 'N,Beta', orderFilt, rolloff)
hDTxFilt = design(hTxFilt)
hDRxFilt = design(hRxFilt)
hDTxFilt.PersistentMemory = true; hDRxFilt.PersistentMemory = true;
% Multipath channel
fd = 0; % Maximum Doppler shift (Hz)
chan = rayleighchan(Tsamp, fd); % Create channel object.
chan.PathDelays = [0 0.4 0.9 ]*Tsym; % Path delay vector (s)
chan.AvgPathGaindB = [0 -15 -20]; % Average path gain vector (dB)
chan.ResetBeforeFiltering = 0; % Allow state retention across blocks.
delay = chan.ChannelFilterDelay
%simName = 'Linear equalization for frequency-selective fading';
ri=filter(chan,xText)
rx=filter(chan,xTrain)
snrdB = EsNodB - 10*log10(osfFilt); % Signal-to-noise ratio per sample (dB)
%n = randn(s4,1,nPayload) + 1i*randn(s5,1,nPayload); % white gaussian noise, 0dB variance
n = randn(s4,1,nPayload); % white gaussian noise, 0dB variance
std=sqrt(10^(-snrdB/10));
ni=std*n;
%ri1=ri+ni;
% Adaptive equalizer
nWeights = 8;
forgetFactor = 0.99; % RLS algorithm forgetting factor
alg = rls(forgetFactor); % RLS algorithm object
eqObj = lineareq(nWeights, alg) % Equalizer object
eqObj.RefTap = 3; % Reference tap
y = equalize(eqObj,ri,rx)
%disp('y');disp(y);
pskdmodObj = modem.pskdemod(M);
y1 = demodulate(pskdmodObj, y)
%y1 = real(y)>0;
disp('y1');disp(y1);
%nErr = size(find(xTextSym- y1),2);
%for j=1:1:100 % if y1(j)~=xTextSym(j) % errcount=errcount+1; % end % end
%errcount=errcount+nErr;
%reset(pskmodObj); %reset(pskdmodObj); % Compute bit error rate, taking delay into account. % Truncate to account for channel delay.
xTextSym_trunc = xTextSym(1:end-delay); y1_trunc = y1(delay+1:end);
[num,ber] = biterr(xTextSym_trunc,y1_trunc) % Bit error rate
errcount=errcount+ber;
end
k=k+1;
%BER(k)=ber
BER(k)=(errcount/1)
theoryBerAWGN(k) = 0.5*erfc(sqrt(10^(snrdB/10))) % theoretical ber
%EbN0Lin = 10^(snrdB/10);
%theoryBer(k) = 0.5*(1-sqrt(EbN0Lin/(EbN0Lin+1)))
theoryBer(k) = berfading(snrdB,'dpsk',M,1)
snr(k) =snrdB
end
figure
%semilogy(snr,theoryBerAWGN,'cd-','LineWidth',2);
%hold on
semilogy(snr,theoryBer,'bp-','LineWidth',2);
hold on
semilogy(snr,BER,'mx-','LineWidth',2);
grid on
legend('Rayleigh-Theory', 'Rayleigh-Simulation');
%legend('AWGN-Theory','Rayleigh-Theory', 'Rayleigh-Simulation');
xlabel('Eb/No, dB');
ylabel('Bit Error Rate');
title('BER for BPSK modulation in Rayleigh channel');
grid on

回答(1 个)

shaik
shaik 2014-1-19
clc
close all
k=40;
for EsNodB=1:k
s1=RandStream('mrg32k3a','Seed',0);
s4=RandStream('mrg32k3a','Seed',1);
s5=RandStream('mrg32k3a','Seed',2);
errcount=0;
Tsym = 1e-6; % Symbol period (s)
bitsPerSymbol = 1; % Number of bits per BPSK symbol
M = 2.^bitsPerSymbol; % BPSK alphabet size (number of modulation levels)
nPayload = 40; % Number of payload symbols
nTrain = 10; % Number of training symbols
nTail = 20; % Number of tail symbols
hStream = RandStream.create('mt19937ar', 'seed', 12345);
hStream1 = RandStream.create('mt19937ar', 'seed', 12354);
for i=1:1:1
pskmodObj = modem.pskmod(M); % modulator object
xTextSym=randi(s1, [0 M-1], 1, nPayload)
xText = modulate(pskmodObj, xTextSym)
% Training sequence symbols
xTrainSym = randi(hStream, [0 M-1], 1, nTrain);
% Modulated training sequence
xTrain = modulate(pskmodObj, xTrainSym);
% Tail sequence symbols
xTailSym = randi(hStream1, [0 M-1], 1, nTail);
% Modulated tail sequence
xTail = modulate(pskmodObj, xTailSym);
nSymFilt = 8; % Number of symbol periods spanned by each filter
osfFilt = 4; % Oversampling factor for filter (samples per symbol)
rolloff =0.25; % Rolloff factor
Tsamp = Tsym/osfFilt; % TX signal sample period (s)
orderFilt = nSymFilt*osfFilt; % Filter order (number of taps - 1) % Filter responses and structures
hTxFilt = fdesign.interpolator(osfFilt, 'Square Root Raised Cosine', osfFilt, 'N,Beta', orderFilt, rolloff)
hRxFilt = fdesign.decimator(osfFilt, 'Square Root Raised Cosine',osfFilt, 'N,Beta', orderFilt, rolloff)
hDTxFilt = design(hTxFilt)
hDRxFilt = design(hRxFilt)
hDTxFilt.PersistentMemory = true; hDRxFilt.PersistentMemory = true;
% Multipath channel
fd = 0; % Maximum Doppler shift (Hz)
chan = rayleighchan(Tsamp, fd); % Create channel object.
chan.PathDelays = [0 0.4 0.9 ]*Tsym; % Path delay vector (s)
chan.AvgPathGaindB = [0 -15 -20]; % Average path gain vector (dB)
chan.ResetBeforeFiltering = 0; % Allow state retention across blocks.
delay = chan.ChannelFilterDelay
%simName = 'Linear equalization for frequency-selective fading';
ri=filter(chan,xText)
rx=filter(chan,xTrain)
snrdB = EsNodB - 10*log10(osfFilt); % Signal-to-noise ratio per sample (dB)
n = randn(s4,1,nPayload) + 1i*randn(s5,1,nPayload); % white gaussian noise, 0dB variance
n = randn(s4,1,nPayload); % white gaussian noise, 0dB variance
std=sqrt(10^(-snrdB/10));
ni=std*n;
ri1=ri+ni;
% Adaptive equalizer
nWeights = 8;
forgetFactor = 0.99; % RLS algorithm forgetting factor
alg = rls(forgetFactor); % RLS algorithm object
eqObj = lineareq(nWeights, alg) % Equalizer object
eqObj.RefTap = 3; % Reference tap
y = equalize(eqObj,ri,rx)
disp('y');disp(y);
pskdmodObj = modem.pskdemod(M);
y1 = demodulate(pskdmodObj, y)
y1 = real(y)>0;
disp('y1');disp(y1);
nErr = size(find(xTextSym- y1),2);
for j=1:1:40 if y1(j)~=xTextSym(j) errcount=errcount+1; end end
errcount=errcount+nErr;
reset(pskmodObj); reset(pskdmodObj); % Compute bit error rate, taking delay into account. % Truncate to account for channel delay.
xTextSym_trunc = xTextSym(1:end-delay); y1_trunc = y1(delay+1:end);
[num,ber] = biterr(xTextSym_trunc,y1_trunc) % Bit error rate
errcount=errcount+ber;
end
k=k+1;
BER(k)=ber
BER(k)=(errcount/1)
theoryBerAWGN(k) = 0.5*erfc(sqrt(10^(snrdB/10))) % theoretical ber
EbN0Lin = 10^(snrdB/10);
theoryBer(k) = 0.5*(1-sqrt(EbN0Lin/(EbN0Lin+1)))
theoryBer(k) = berfading(snrdB,'dpsk',M,1)
snr(k) =snrdB
end snr figure
semilogy(snr,theoryBerAWGN,'*','LineWidth',2);
hold on
semilogy(snr,theoryBer,'g-*','LineWidth',2);
hold on
semilogy(snr,BER,'r-*','LineWidth',2);
grid on
legend('Rayleigh-Theory', 'Rayleigh-Simulation');
legend('AWGN-Theory','Rayleigh-Theory', 'Rayleigh-Simulation');
xlabel('Eb/No, dB');
ylabel('Bit Error Rate');
title('BER for BPSK modulation in Rayleigh channel');
grid on
this is the coding whose error has been removed

类别

Help CenterFile Exchange 中查找有关 Propagation and Channel Models 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by