How to fit a log curve to a scatterplot?

32 次查看(过去 30 天)
Could anyone advise me on how to a fit a curve to this plot?
The y-axis is decibels and so logarithmic.
I have tried the help page of lsqcurvefit but clearly using the wrong inputs as the curve doesn't align with the points.
x=slopeDist; %18 distances in km
y=PSD; %18 dB values from 50-90
scatter(x,y)
p = polyfit(x,y,1);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
legend('data','linear fit')
%fits a line but we want a curve!
%Log curve? Doesn't work...
fun = @(x,xdata)x(1)*exp(x(2)*xdata);
x0 = [100,-1];
x = lsqcurvefit(fun,x0,xdata,ydata)
times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')
  1 个评论
Walter Roberson
Walter Roberson 2021-5-31
I tried your data using cftool. All of the models produced fairly bad fits, except for the piecewise interpolations (such a cubic spline), unless you go for something like an 8 term fourier (each term has two coefficients, so 2*8 = 16 coefficients, and you only have 17 datapoints, so it is not surprising you can get something pretty close. But it is also useless, taking wild swings.)

请先登录,再进行评论。

回答(1 个)

Star Strider
Star Strider 2021-5-28
编辑:Star Strider 2021-5-28
If you have the Statistics and Machine Learning Toolbox, use the lsline funciton.
Otherwise use polyfit and polyval.
x = 1:10;
y = 10.^(-x/20) + randn(size(x))/10;
figure
scatter(x, mag2db(y), 'p')
grid
lsline
EDIT — Added plot.
.
  6 个评论
Louise Wilson
Louise Wilson 2021-5-31
Thanks. The reason I have a straight line regression is because that's all I know how to do. The data hasn't changed. I have tried with polyfit too but it produces the same output, a straight line.
p = polyfit(xdata,ydata,1);
f = polyval(p,xdata);
plot(xdata,ydata,'o',xdata,f,'-')
legend('data','linear fit')
Star Strider
Star Strider 2021-5-31
This is the best I can do —
LD = load('data.mat');
outsort = sortrows(LD.out); % Not Sorting The Rows Creates Problems For The Regression
x = outsort(:,1);
y = outsort(:,2);
fcn = @(b,x) b(1).*exp(b(2).*x) + b(3);
B = fminsearch(@(b)norm(fcn(b,x)-y), [90; 0.001; 60] );
yfit = fcn(B,x);
expstr = @(x) [x(:).*10.^ceil(-log10(abs(x(:)+(x==0)))) floor(log10(abs(x(:)+(x==0))))];
figure
scatter(x, y)
hold on
plot(x, yfit, '-r')
hold off
grid
text(2.5E+5, 77.5, sprintf('$y = %.1f\\ e^{%.1f\\times 10^{%d} \\ x} +%.1f$',B(1),expstr(B(2)),B(3)), 'Interpreter','latex', 'FontSize',15);
I added the equation for the regression. Remove that if it is not necessary. (The ‘expstr’ function generates the matissa and exponent from ‘B(2)’ here. It looks better than displaying all the leading zeros in the regression equation. If you do not want to display the regression equation, the function is not otherwise necessary for the code.)
.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Get Started with Curve Fitting Toolbox 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by