I want to know how I can apply filter to my signal which I have plotted from a graph

1 次查看(过去 30 天)
s17v21=xlsread('s17_v21_128Hz_ppg_sad.xlsx','Sheet1','A1:B8064');
time=s17v21(:,1);
amplitude=s17v21(:,2);
plot(time,amplitude);
  4 个评论

请先登录,再进行评论。

回答(2 个)

Scott MacKenzie
Scott MacKenzie 2021-6-28
Here's a simple approach to ploting the wave with some filtering added:
f = 'https://www.mathworks.com/matlabcentral/answers/uploaded_files/667893/s01_v9_128Hz_ppg_happy.xlsx';
s17v21=readmatrix(f,'range','A1:B8064');
time=s17v21(:,1);
amplitude=s17v21(:,2);
tiledlayout(3,1);
nexttile;
plot(amplitude);
nexttile
plot(movmean(amplitude,100));
nexttile
plot(movmean(amplitude,500));
  2 个评论
Mayukh Biswas
Mayukh Biswas 2021-6-28
编辑:Mayukh Biswas 2021-6-28
Undefined function or variable 'readmatrix'
Error in filter3 (line 2)
s17v21=readmatrix(f,'range','A1:B8064');
showing this error
Scott MacKenzie
Scott MacKenzie 2021-6-28
编辑:Scott MacKenzie 2021-6-28
You needed R2019a or later. Otherwise, just revert to your code using xlsread.
Ah, yes, and tiledlayout needs R2019b or later. You'll need to use subplot if you using an older version of MATLAB.

请先登录,再进行评论。


Mathieu NOE
Mathieu NOE 2021-6-28
hello
I wanted to look at the spectral content of your data - so I use my "all in one" code for spectral analysis.
see the results of the spectrogram , there is the baseline plus some low frequency tones (harmonics) which frequency and amplitude slowly change with time.
the question is what portion of the signal are you interested to keep / remove ?
clc
clearvars
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
data =xlsread('s01_v9_128Hz_ppg_happy');
time=data(:,1);
signal=data(:,2);
% [signal,Fs] = audioread('test_voice.wav');
dt = mean(diff(time));
Fs = 1/dt;
[samples,channels] = size(data);
channels = channels-1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 512; %
OVERLAP = 0.95;
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 5;
if decim>1
for ck = 1:channels
newsignal(:,ck) = decimate(signal(:,ck),decim);
Fs = Fs/decim;
end
signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;
%%%%%% legend structure %%%%%%%%
for ck = 1:channels
leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(2),plot(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
[sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2+ck);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid on
df = fsg(2)-fsg(1); % freq resolution
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
xlabel('Time (s)');ylabel('Frequency (Hz)');
end
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,channels);
s_tmp((1:samples),:) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
  1 个评论
Mathieu NOE
Mathieu NOE 2021-6-28
and if the question is related to data smoothing, you can experiment with this (a few of the many options available)
clc
clearvars
data =xlsread('s01_v9_128Hz_ppg_happy');
t=data(:,1);
y=data(:,2);
dt = mean(diff(t));
Fs = 1/dt;
% %%%%%%%%%%%%%%%%
figure(1)
N = 1000;
ys = smoothdata(y, 'gaussian' , N);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with smoothdata' ]);
% %%%%%%%%%%%%%%%%
figure(2)
N = 1000;
ys = medfilt1(y, N,'truncate');
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with medfilt1' ]);
grid on
%%%%%%%%%%%%%%%%
figure(3)
ys = sgolayfilt(y,1,1001);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with sgolayfilt' ]);
grid on
%%%%%%%%%%%%%%%%
NN = 4;
Wn = 0.0025;
[B,A] = butter(NN,Wn);
figure(4)
ys = filtfilt(B,A,y);
plot(t,y,t,ys);legend('Raw','Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with butterworth LP' ]);
grid on

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Spectral Measurements 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by