To calculate interference in a network graph using the formula ( interference = r_i^m ), where "r_i" is a given interference factor and "m" is the number of interfering nodes, you can follow the below steps:
- Understand the Network Structure: You have a graph representing nodes and edges, where each edge can be either present or absent based on the binary representation of c.
- Calculate Interference: For each path between the source and destination, determine the number of interfering nodes and apply the formula "r_i^m".
Below is a refined version of your code that includes the calculation of interference:
n = 3; % Number of nodes
ri = 0.9; % Interference factor
source = 1; % Source node
destination = 3; % Destination node
Link = (n * (n - 1)) / 2; % Total number of possible links
c = 2^Link; % Total number of configurations
NN = toeplitz(Link+1:-1:2); % Generate a Toeplitz matrix
mask = logical(fliplr(diag(ones(1, Link-1), -1)));
NN(mask) = 1; % Adjust the matrix with a mask
% Iterate over all possible edge configurations
for config = 0:2^Link-1
l = bitget(config, NN); % Get the binary representation of config
G = graph(l ~= 0); % Create a graph from the binary configuration
% Check if a path exists between source and destination
if haspath(G, source, destination)
path = shortestpath(G, source, destination); % Find the shortest path
m = length(path) - 2; % Number of interfering nodes (excluding source and destination)
interference = ri^m; % Calculate interference
fprintf('Configuration: %d, Path: %s, Interference: %.4f\n', config, mat2str(path), interference);
end
end
% Calculate the distance matrix D
D = zeros(3, 3);
for r = 1:3
for s = 1:3
if r ~= s
D(r, s) = sqrt(r^2 + s^2);
end
end
end
disp('Distance matrix D:');
disp(D);
This will print the path and corresponding interference for each configuration where a path exists between the source and destination nodes.
Hope this helps!