Discrepancy between eigenvalues and eigenvectors derived from analytical solution and matlab code.
1 次查看(过去 30 天)
显示 更早的评论
Hello,
I have this matrix [ep+V/2 t*phi; t*conj(phi) eb-V/2].
The analytical solution for eigenvalues of this matrix is E=(eb+ep)/2+v*sqrt((eb-ep+V)/2+t^2*|phi|^2).
But matlab solution is different from this.
Can someone help me for solve this chalenge?
2 个评论
采纳的回答
Chunru
2021-7-23
编辑:Chunru
2021-7-23
First, the sign in the last element of H should be '-' rather than '+' as in your question. Second, "doc eig" command for the order of output variables. Third, make sure your analytical result is correct. Try manual simplification then. You may want to verify the symbolic expressions with some numerical values to see if they agree.
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb-V/2]
[v,d]=eig(H) % not [E, v]
更多回答(1 个)
Steven Lord
2021-7-23
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb+V/2]
[E,v]=eig(H)
Let's check if the elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H.
simplify(H*E-E*v)
The elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H, so they are eigenvectors and eigenvalues of H. What did you say you expected the eigenvalues to be?
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear Algebra 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!