Goodness of fit , residual plot for fminbnd fitting

1 次查看(过去 30 天)
I have the data fitting using fminbnd solver. I am wondering how to evaluate the goodness of the fit and obtain residual plots. I dont see any options to display the residuals for fminbnd solver like other solvers. Below is my code:
t1 = [0:300:28800]'; % input X data
% input Y data
y_obs = [
0
0.0350666
0.170773
0.298962
0.400482
0.481344
0.541061
0.588307
0.626498
0.657928
0.684406
0.705545
0.721963
0.738828
0.753222
0.765903
0.776001
0.786196
0.795698
0.804062
0.81206
0.820732
0.825598
0.832848
0.837778
0.8436
0.848495
0.852999
0.858091
0.863251
0.86657
0.870919
0.875362
0.879617
0.882049
0.884957
0.887106
0.889922
0.894813
0.896395
0.900105
0.903234
0.905787
0.907843
0.909099
0.913799
0.914104
0.916195
0.920424
0.922772
0.923837
0.922742
0.924935
0.927408
0.92851
0.930684
0.930988
0.933917
0.935012
0.938209
0.940926
0.942448
0.943642
0.942436
0.94564
0.946308
0.949709
0.950971
0.951911
0.954338
0.955225
0.958114
0.958801
0.962341
0.963808
0.965617
0.965214
0.966752
0.971954
0.971949
0.973827
0.977233
0.977157
0.980893
0.979747
0.981409
0.984914
0.986015
0.986951
0.990709
0.990882
0.991937
0.992701
0.996347
0.998733
0.999351
1
];
%************
% Guessing the initial assumption d0 by finding the minimum using min function
%Implementing fminbnd instead of lsqnonlin
pfun = @(d) norm( ypred(d, t1) - y_obs);
dsamps=linspace(0,15e-10,50);
[~,imin]=min( arrayfun(pfun,dsamps) );
[best_d,fval,exitflag,output]=fminbnd(pfun,dsamps(imin-1), dsamps(imin+1),...
optimset('TolX',1e-14))
best_d =
6.545737727815822e-10
fval =
4.578375975388594e-01
exitflag =
1
output = struct with fields:
iterations: 8 funcCount: 9 algorithm: 'golden section search, parabolic interpolation' message: 'Optimization terminated:↵ the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-14 ↵'
exitflag,
exitflag =
1
best_d,
best_d =
6.545737727815822e-10
%****************
%************
t2 = [0:5/60:8]';
predicted_y = ypred(best_d, t1);
figure(2)
plot(t2, y_obs, 'ro', t2, predicted_y, 'b-');
grid on
set(gca,'XLim',[0 8])
set(gca,'XTick',(0:0.5:8))
ylim([ 0 1.4])
ylabel('At/Ainf')
xlabel('Time in h')
legend({'observed', 'predicted'})
title('fitting upto full 8 hours; thickness = 2.63')
%***************
%Plotting the verification of minimum
figure(1)
fplot(pfun,[0,4e-10])
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
hold on; plot(best_d*[1,1],ylim,'--rx');
title('Verification of whether minimum was correctly found by fminbnd solver')
hold off
%***** Fitting model equation
function y_pred = ypred(d, t1)
a=0.00263;
gama = 0.01005;
L2 = zeros(14,1);
L3 = zeros(100,1);
L4 = zeros(100,1);
L5 = zeros(100,1);
S= zeros(97,1);
y_pred = zeros(97,1);
% t = 0;
L1 = ((8*gama)/((pi*(1-exp(-2*gama*a)))));
format longE
for t = t1(:).'
for n=0:1:100
L2(n+1) = exp((((2*n + 1)^2)*-d*pi*pi*t)/(4*a*a));
L3(n+1) = (((-1)^n)*2*gama)+(((2*n+1)*pi)*exp(-2*gama*a))/(2*a);
L4(n+1)= ((2*n)+1)*((4*gama*gama)+((((2*n)+1)*pi)/(2*a))^2);
L5(n+1) = ((L2(n+1)*L3(n+1))/L4(n+1));
end
S((t/300) +1) = sum(L5);
y_pred((t/300)+1)= 1 -(L1*S((t/300) +1)); % predicted data
end
end
  2 个评论
Adam Danz
Adam Danz 2021-7-27
编辑:Adam Danz 2021-7-27
I edited the question to run the code and produce plots.
Adam Danz
Adam Danz 2021-7-27
The prediction-observation plot does not look like a good fit to me.

请先登录,再进行评论。

采纳的回答

Adam Danz
Adam Danz 2021-7-27
编辑:Adam Danz 2021-7-29
See matlab's documentation on goodness of fit. There are lots of options and you've got all the variables you need to move forward.
The residuals are just the difference between the predicted y-values and the actual y values. Here's how to plot them:
figure()
tiledlayout(2,1)
nexttile
stem(t2, predicted_y-y_obs)
xlabel('t2')
ylabel('residuals')
nexttile()
histogram(predicted_y-y_obs)
xlabel('residual')
ylabel('frequency')

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Solver Outputs and Iterative Display 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by