HOG feature Extraction with CNN for Handwritten Recognition
3 次查看(过去 30 天)
显示 更早的评论
Hi im trying to combine HOG feature extraction with CNN and below is the script that im working on right now. But the script gave me an error saying:
Error using trainNetwork (line 183)
Number of observations in X and Y disagree.
Error in HOGfeature (line 62)
net = trainNetwork(trainingfeatures,trainingLabels,layers,options); %Network Training
Can somone help me with this btw the dataset that im using for this project are MNIST.
close all
clear
clc
path1='D:\CNN test\Imagedb\HOGtrainset';
path2='D:\CNN test\Imagedb\HOGtestset';
traindb = imageDatastore(path1,'IncludeSubfolders' ,true,'LabelSource','foldernames');
testdb = imageDatastore(path2,'IncludeSubfolders' ,true,'LabelSource','foldernames');
%training
img = readimage(traindb,1);
CS=[8,8]; %cellsize
[hogfv,hogvis] = extractHOGFeatures(img,'CellSize',CS);
hogfeaturesize = length(hogfv);
totaltrainimages = numel(traindb.Files);
trainingfeatures = zeros(totaltrainimages, hogfeaturesize,'single');
for i = 1:totaltrainimages
img = readimage(traindb,i);
trainingfeatures(i, :) = extractHOGFeatures(img,'CellSize',CS);
end
trainingLabels = traindb.Labels;
%% Building CNN
layers=[
imageInputLayer([28 28 1],'Name','Input')
convolution2dLayer(3,8,'Padding','same','Name','Conv_1')
batchNormalizationLayer('Name','BN_1')
reluLayer('Name','Relu_1')
maxPooling2dLayer(2,'Stride',2,'Name','MaxPool_1')
convolution2dLayer(3,16,'Padding','same','Name','Conv_2')
batchNormalizationLayer('Name','BN_2')
reluLayer('Name','Relu_2')
maxPooling2dLayer(2,'Stride',2,'Name','MaxPool_2')
convolution2dLayer(3,32,'Padding','same','Name','Conv_3')
batchNormalizationLayer('Name','BN_3')
reluLayer('Name','Relu_3')
maxPooling2dLayer(2,'Stride',2,'Name','Maxpool_3')
convolution2dLayer(3,64,'Padding','same','Name','Conv_4')
batchNormalizationLayer('Name','BN_4')
reluLayer('Name','Relu_4')
fullyConnectedLayer(10,'Name','FC')
softmaxLayer('Name','Softmax');
classificationLayer('Name','Output Classification');
];
%Igraph = layerGraph(layers);
%plot(Igraph); %Plotting Network Structure
%-----------------------------------Training Options-----------------
options = trainingOptions('sgdm','InitialLearnRate',0.01,'MaxEpochs',4,'Shuffle','every-epoch','ValidationData',testdb,'ValidationFrequency',30,'Verbose',false,'Plots','training-progress');
net = trainNetwork(trainingfeatures,trainingLabels,layers,options); %Network Training
Ypred = classify(net,testdb); %Recognizing Digits
YValidation = testdb.Labels; %Getting Labels
accuracy = sum(Ypred == YValidation)/numel(YValidation); %Finding %age accuracy
0 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Recognition, Object Detection, and Semantic Segmentation 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!