Why is the Fourier Transform of symbolic Laplacian function (2nd partial derivative) not being found?
2 次查看(过去 30 天)
显示 更早的评论
I am needing to find the Fourier Transform of the following symbolic expression:
syms U(x,y,z) beta k
LHS = laplacian(U) + beta.^2*U
LHS_FT = fourier(LHS)
That is,
I'm needing to take the spatial 3D Fourier Transform of LHS.
This is the output I get:
LHS(x, y, z) =
LHS_FT(y, z) =
I am stuck here, any help would be much appreciated! Thank you in advance!
7 个评论
David Goodmanson
2021-8-18
编辑:David Goodmanson
2021-8-18
Hi Paul,
the answer was
LHS_FT =
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), y, y), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), z, z), x, kx), y, ky), z, kz)
so it could do the conversion d^2/dx^2 --> -kx^2, but it couldn't convert d^2/dy^2 or d^2/dz^2, which would have made the nice symmetric expression
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- ky^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kz^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!