Strategy for finding optimal omega in SOR method
24 次查看(过去 30 天)
显示 更早的评论
I had written an algorithm that searches for the optimal weight parameter to be implemented in the successive-over relaxation (SOR) method which worked cleanly by vectorizing the interval and for each ω the spectral radius of the iteration matrix is computed.
However, I was advised not to use this approach for large sparse matrices as it is expensive to compute (the same way computing condition number of a large matrix is unfeasible) and rather use it as a demonstration tool. Therefore, I was wondering what strategy is the best to approximate the optimal weight parameter for large sparse systems () that would allow the best convergence of the SOR.
Furthermore, as a result of my question I was wondering if classical iterative stationary methods such as Jacobi, Gauss-Seidel, and the SOR are worthy to be used nowadays in dealing with large sparse systems or is the default preference Krylov methods?
0 个评论
回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!