Sampling data at x_n=cos(n*pi/N) for fft derivative

3 次查看(过去 30 天)
I am trying to find the derivative of nonperiodic function with chebyshev polynomials.
The function below is from 'Spectral methods in Matlab'. It expects that the vector v is sampled at x_n=cos(n*pi/N).
x = linspace(1,10,10);
y = rand(1,10)*10;
How to sample y at x_n = cos(n*pi/N) assuming domain [-1,1]
function w = chebfft(v)
N = length(v)-1; if N==0, w=0; return, end
x = cos((0:N)'*pi/N);
ii = 0:N-1;
v = v(:); V = [v; flipud(v(2:N))]; % transform x -> theta
U = real(fft(V));
W = real(ifft(1i*[ii 0 1-N:-1]'.*U));
w = zeros(N+1,1);
w(2:N) = W(2:N)./sqrt(1-x(2:N).^2); % transform theta -> x
w(1) = sum(ii'.^2.*U(ii+1))/N + .5*N*U(N+1);
w(N+1) = sum((-1).^(ii+1)'.*ii'.^2.*U(ii+1))/N + ...
.5*(-1)^(N+1)*N*U(N+1);

回答(1 个)

Sulaymon Eshkabilov
I'd see here to use logical indexing for sampling. E.g.:
N=10; y=rand(1,N)*10;
x_n = cos((0:N)'*pi/N);
Y_Sampled=y(x_n>=0);

类别

Help CenterFile Exchange 中查找有关 Fourier Analysis and Filtering 的更多信息

标签

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by