Problem 1846. Free Fall analytical solution (Chapra 2012 textbook Example 1.1)
Analytical solution to bungee jumper problem.
Given time series as a vector, parameters mass and drag coefficient, and gravity coefficient, compute values of bungee jumper velocity (downward speed) at given times. Assume input values are in consistent units.
Problem Statement (Chapra, page 7): A bungee jumper with a mass of 68.1 kg leaps from a stationary hot air balloon. Use Eq. (1.9) to compute velocity for the first 12 s of free fall. Also determine the terminal velocity that will be attained for an infinitely long cord (or alternatively, the jumpmaster is having a particularly bad day!). Use a drag coefficient of 0.25 kg/m.
Solution Stats
Problem Comments
-
1 Comment
The formula #1.9 is given by https://www.sccollege.edu/Departments/MATH/Documents/Math%20180/03-11-054_Hyperbolic_Functions.pdf (If this link becomes unavailable, Google free-fall velocity hyperbolic tangent)
Solution Comments
Show commentsProblem Recent Solvers25
Suggested Problems
-
5902 Solvers
-
Who knows the last digit of pi?
662 Solvers
-
Make an awesome ramp for a tiny motorcycle stuntman
652 Solvers
-
Test if two numbers have the same digits
243 Solvers
-
476 Solvers
More from this Author17
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!