Problem 313. Pythagorean perfect squares: find the square of the hypotenuse and the length of the other side
Given the square root of a square number, seed, and a range, n, find the square number, Z as well as the other side, y, the square root of a square number i.e. return the hypotenuse squared as well as the length of the other side. Note that n is the number of squares to search through starting with one.
HINT: Z = seed^2 + y^2 where Z = z^2, find Z first and then y.
Note that Z, seed^2 and y^2 are all perfect squares.
>> [z s] = findPerfectZ(3,6)
z = 25
s = 4
>>
Solution Stats
Problem Comments
-
1 Comment
There's a problem with the solution suite. For seed=12 and n=16, the proposed answer of 5, 12, 13 as a Pythagorean triple is indeed a good one. However, 9, 12, 15 is equally valid but not included as an answer. To avoid this, I would suggest changing the problem so that it requires finding the answer with the minimum Z^2 to avoid ambiguity.
Solution Comments
Show commentsProblem Recent Solvers53
Suggested Problems
-
Find the two most distant points
2837 Solvers
-
2315 Solvers
-
1242 Solvers
-
Cell Counting: How Many Draws?
1904 Solvers
-
How long do each of the stages of the rocket take to burn?
303 Solvers
More from this Author16
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!