A prime-sided rectangle is a rectangle having sides represented by prime numbers. The figure below shows all the possible prime-sided rectangles whose areas are less than or equal to 25:
Given an area limit 'n', count the total number of prime-sided rectangles that can be formed , with areas less than or equal to 'n'.
In the figure above, we can see that there are only 9 prime-sided recatangles having areas are less than or equal to 25. Therefore, for n = 25 the output should be 9. For n = 100, there are 34 such rectangles.
NOTE: Rotations are not important and are counted only once.
Solution Stats
Problem Comments
1 Comment
Solution Comments
Show comments
Loading...
Problem Recent Solvers8
Suggested Problems
-
Return a list sorted by number of consecutive occurrences
427 Solvers
-
We love vectorized solutions. Problem 1 : remove the row average.
884 Solvers
-
Multiples of a Number in a Given Range
939 Solvers
-
Electrical Diode Current Calculation
1097 Solvers
-
183 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I am getting 2 less on test 7. Not sure what the problem is.