Problem 52809. Easy Sequences 28: Sum of Radicals of Integers
The radical of a positive integer x is defined as the product of the distinct prime numbers dividing x. For example, the distinct prime factors of is , therefore the radical of is . Similarly, the radicals of , and are , 5 and , respectively, The number1is considered to be the radical of itself.
Given a limit n, find the sum of the radicals of all positive integers .
For , the radicals are: . Therefore, the output should be '41'.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers8
Suggested Problems
-
3059 Solvers
-
Back to basics 20 - singleton dimensions
269 Solvers
-
938 Solvers
-
Is this triangle right-angled?
5810 Solvers
-
Highly divisible triangular number (inspired by Project Euler 12)
111 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!