Deep Learning for Real-Time Top Quark Jet Tagging

版本 1.2.0 (589.5 KB) 作者: Temo Vekua
End-to-end MATLAB Deep Learning workflow for Real-Time Top Quark Jet Tagging is presented
73.0 次下载
更新时间 2023/2/1

Deep-Learning-for-Real-Time-Top-Jet-Tagging

End-to-end MATLAB® workflow for Real-Time Top Quark Jet Tagging is presented. Live script contains a predictive model, based on deep convolutional neural network, that discriminates top quark (signal) jets from QCD plain vanilla (background) jets. Besides a predictive model, the workflow presented includes: accessing and preprocessing particle scattering data, transforming jets to 2D images, and code generation for deployment of the network on FPGA.

Setup

To Run:

  1. Download particle jets open datasets as instructed in the Reference Datasets section of the Live script. Open Python, import part of the randomly sampled data as pandas dataframes and save in parquet format.
  2. Import parquet data as a MATLAB table, preprocess jets to images and save to disc.
  3. Build deep convolusional neural network using App designer® and train network using training datasets.
  4. Check accuracy of the network on test datasets.
  5. Deploy trained network on FPGA following Deploy Trained Network on FPGA section of the Live script.

MathWorks Products (https://www.mathworks.com)

Requires MATLAB release R2020a or newer

引用格式

Temo Vekua (2025). Deep Learning for Real-Time Top Quark Jet Tagging (https://github.com/MathWorks-Teaching-Resources/Deep-Learning-for-Real-Time-Top-Jet-Tagging), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2021b
兼容任何版本
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.2.0

included image

1.1.0

connected to github

1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库