Cloud API for gradual patterns

版本 1.0.0 (1.4 MB) 作者: Dickson Owuor
Cloud API framework for crossing IoT data streams and extracting gradual patterns
1.0 次下载
更新时间 2022/4/12

Integrating gradual pattern mining tools into the Cloud

A Docker implementation of OGC/SensorThings API with gradual pattern mining tools integrated into it

alt text

Research paper is available via this link:

  • Owuor, Dickson, Anne Laurent, Joseph Orero, and Olivier Lobry. "Gradual Pattern Mining Tool on Cloud." Extraction et Gestion des Connaissances: Actes EGC'2021 (2021).

Requirements

You will be required to install Docker

Installation

  1. Download package

  2. Use a command line program with the local package:

$docker-compose up

Usage

Launch your Browser and go to: http://localhost:8080

NB: a sample IoT data set provided in sample_data, follow the steps to populate your database

References

  • Owuor D.O., Laurent A., Orero J.O. (2020) Exploiting IoT Data Crossings for Gradual Pattern Mining Through Parallel Processing. In: Bellatreche L. et al. (eds) ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium. TPDL 2020, ADBIS 2020. Communications in Computer and Information Science, vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-55814-7_9

  • Dickson Owuor, Anne Laurent, and Joseph Orero (2019). Mining Fuzzy-temporal Gradual Patterns. In the proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FuzzIEEE). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858883

引用格式

Dickson Owuor (2026). Cloud API for gradual patterns (https://github.com/owuordickson/cloud-api/releases/tag/v1.0.0), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2022a
兼容任何版本
平台兼容性
Windows macOS Linux
版本 已发布 发行说明
1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库