global_optim_fitting_matlab
版本 1.0.0 (91.9 KB) 作者:
Thomas Guillod
MATLAB Toolbox for Global Fitting/Optimization
MATLAB Toolbox for Global Fitting/Optimization
This MATLAB toolbox can be used for the following problems:
- finding global minimum of a function
- fitting a function to a dataset
This toolbox is specially adapted to the following problems:
- non-smooth error function
- non-convex error function
- computationally heavy error function
- error function with local minima
- error function with many input variables
This toolbox provides a common interface for different solvers:
- gradient: fminunc / fmincon
- simplex: fminsearch
- surrogate: surrogateopt
- evolutionary: particleswarm / ga
- the aforementioned solvers can be combined
Customized error function:
- custom weights for the dataset points
- choice of the error metric (norm, average, percentile, etc.)
- recover from undefined values
- vectorized evaluation of the error function
- parallel evaluation of the error function
- caching of the error function
Advanced variable handling:
- abstraction layer for the variables
- initial values
- scalar or vector variables
- variable transformation (linear, quadratic, logarithmic, etc.)
- variable normalization
- constraints (lower and upper bounds)
- sine transformation for handling constraints
Advanced monitoring capabilities:
- compute various error metrics
- compute solver figures of merit
- plot/display the solver progress
- plot/display the final results
Limitations
- All the provided features have a computational cost.
- Therefore, this library is mostly adapted to time-consuming error functions.
- For simple error functions, the overhead is non-negligible.
Examples
- run_example_fitting.m - Simple fitting of a model with respect to a dataset.
- run_example_optim.m - Find the global minimum of a function.
Compatibility
- Tested with MATLAB R2021a.
- The
gads_toolbox
is required (for the MATLAB solvers). - The
optimization_toolbox
is required (for the MATLAB solvers). - The
distrib_computing_toolbox
is required (for parfor loops) - Compatibility with GNU Octave not tested but probably problematic.
Author
Thomas Guillod - GitHub Profile
License
This project is licensed under the BSD License, see LICENSE.md.
引用格式
Thomas Guillod (2025). global_optim_fitting_matlab (https://github.com/otvam/global_optim_fitting_matlab), GitHub. 检索时间: .
MATLAB 版本兼容性
创建方式
R2022a
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!param
solver
无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |
|
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。