PandasToMatlab

版本 0.23 (161.5 KB) 作者: Artem Lensky
The functions are designed to communicate between Python Pandas and Matlab
566.0 次下载
更新时间 2022/5/26

Pandas<->Matlab

The functions are designed to convert Pandas DataFrames and Series to Matlab and back. Function df2t converts DataFrames and Series to Matlab in memory w/o saving anthing to the disk, while t2df converts Table to DataFrame.

Make sure to set up Python in Matlab

pe = pyenv;
if pe.Status == "NotLoaded"
    [~,exepath] = system("where python");
    pe = pyenv('Version',exepath);
end

Create a simple dataframe from json and convert to Table

jsonData = "{'gender': (['male'] * 6)+['female']," + ...
       "'name': ['Anton', 'Bill', 'Charlie', 'Don', 'Emil', 'Emil', 'Charlie']," +...
       "'eye_color': ['blue', 'green', 'green', 'green', 'blue', 'green', 'green']}";
df = py.pandas.DataFrame(py.eval(jsonData, py.dict()));
testTable = df2t(df);
% plot the statistics
figure("Color","white", "Position", [0,0,800,400])
subplot(1,3,1), hist(categorical(testTable.gender))
subplot(1,3,2), hist(categorical(testTable.name))
subplot(1,3,3), hist(categorical(testTable.eye_color))

Histogram

Create a Table and convert it to DataFrame

% then use Pandas to sample from it and create new dataframe, and convert it to Table
Name            = {["Roger", "Sanchez"];
                   ["Paul", "Johnson"];
                   ["Lisa", "Li"];
                   ["Don", "Diaz"];
                   ["Havana ", "Brown"]};
Age             = [38;43;38;40;49];
Smoker          = logical([1;0;1;0;1]);
Height          = [71;69;64;67;64];
Weight          = [176;163;131;133;119];
BloodPressure   = [124 93; 109 77; 125 83; 117 75; 122 80];
T = table(Name,Age,Smoker,Height,Weight,BloodPressure);
T.BMI           = (T.Weight * 0.453592)./(T.Height * 0.0254).^2;
df              = t2df(T);
% Sample from the dataframe
df_sampled      = df.sample(int64(10), replace=true);
table_sampled   = df2t(df_sampled)

table1

Convert a Series to Table

% Create a Series of random integers using numpy.random and convert to table 
rng = py.numpy.random.RandomState(int64(42));
integers = rng.randint(int64(0), int64(10), int64(4));
pySeries = py.pandas.Series(integers, pyargs('name', 'integers'));
matSeries = df2t(pySeries)

table2

% Create a Series of random integers using Matlab rand with letters as indexes
% and convert to Matlab.
pySeries = py.pandas.Series(rand(1,4), pyargs('name', 'real','index', {'a', 'b', 'c', 'd'}));
df2t(pySeries)

table3

% Create a Series of strings 
data_list = {"Jeff Bezos", "Elon Musk",...
             "Bernard Arnault", "Bill Gates", "Warren Buffett"};
pySeries = py.pandas.Series(data_list, pyargs('name', 'Billioners','index', int64([1:numel(data_list)])));
billioners = df2t(pySeries);
billioners([2:3],:)

table2

Related Utilities

py2mat.m and mat2py.m convert generic Python variables to Matlab variables and vice versa.

引用格式

Artem Lensky (2024). PandasToMatlab (https://github.com/Lenskiy/PandasToMatlab/releases/tag/v0.23), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2022a
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
0.23

See release notes for this release on GitHub: https://github.com/Lenskiy/PandasToMatlab/releases/tag/v0.23

0.21

See release notes for this release on GitHub: https://github.com/Lenskiy/PythonToMatlab/releases/tag/v0.21

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库