Tutorial: Bayesian Optimization

版本 1.0.0 (4.0 KB) 作者: Karl Ezra Pilario
1D and 2D black-box Bayesian optimization demonstration with visualizations.
376.0 次下载
更新时间 2022/7/13

查看许可证

This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.

引用格式

Karl Ezra Pilario (2024). Tutorial: Bayesian Optimization (https://www.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. 检索来源 .

MATLAB 版本兼容性
创建方式 R2022a
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0