Data reduction technique in fuzzy association rule mining

版本 1.1.1 (11.4 KB) 作者: Vugar
This submission contains a technique to decrease the processed-data size in fuzzy association rule mining (ARM).
18.0 次下载
更新时间 2022/10/25

查看许可证

This submission is to support the submission of the corresponding paper. The paper analyzes the data reduction technique proposed in https://doi.org/10.1016/j.eswa.2020.113781.
The submission has 7 main scripts to be launched in the following order:
1) Initial_dataset_processing % the script performs clustering by fuzzy C-means to obtain a reduced-size "Data_KM_Final_Set.txt". If no mindist is required, use mindist=999
or
Initial_dataset_processing_KM % the script performs clustering by K-means to obtain a reduced-size "Data_KM_Final_Set.txt". If no mindist is required, use mindist=999
2) Initial_dataset_formalization % the script prepares a dataset for further ARM.
3) MF_Show % the script plots the results of partitioning.
4) Critical_C=???? % the operation defines minsupp in ARM.
5) Entire_Ruleset_Design % the script performs ARM.
6) FIS_Design % the script creates a Mamdani-Type FIS from the ARM results.
7) FIS_Running % the created FIS is tested on selected data.
Note: this submission is a variation of https://www.mathworks.com/matlabcentral/fileexchange/73104 and, possibly, will be merged with it in the future.

引用格式

Vugar (2024). Data reduction technique in fuzzy association rule mining (https://www.mathworks.com/matlabcentral/fileexchange/119303-data-reduction-technique-in-fuzzy-association-rule-mining), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2017b
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.1.1

Description update

1.1.0

A tool has been added.

1.0.0