Singular Fourier-Pade approximation

版本 1.0.0.0 (1.7 KB) 作者: Toby Driscoll
Circumvention of the Gibbs phenonmenon though Pade approximations with singularities
1.8K 次下载
更新时间 2006/9/26

查看许可证

Partial sums of Fourier terms for a function with jumps in value or derivative converge poorly, because of the Gibbs phenomenon. This file uses the Fourier coefficients, and locations of the singularities, to construct a different approximation that converges spectrally. For details, see T. A. Driscoll and B. Fornberg, Numerical Algorithms 26 (2001), pp. 77-92.

Example for f(x)=|x|, using 7 Fourier coefficients:

c = [pi/4 zeros(1,11)];
c(2:2:12) = -(2/pi)*(1:2:11).^(-2);
z0 = exp(1i*[-pi 0]);
[p,q,r] = padelog(c,z0);

% Make a plot:
x = linspace(-pi+10*eps,pi-10*eps,200); z = exp(1i*x);
pz = polyval(p(end:-1:1),z);
qz = polyval(q(end:-1:1),z);
rz{1} = polyval(r{1}(end:-1:1),z);
rz{2} = polyval(r{2}(end:-1:1),z);
fplus = ( pz + rz{1}.*log(1-z/z0(1)) + rz{2}.*log(1-z/z0(2)) ) ./ qz;
plot(x,abs(x),x,2*real(fplus),'k.')

引用格式

Toby Driscoll (2026). Singular Fourier-Pade approximation (https://ww2.mathworks.cn/matlabcentral/fileexchange/12402-singular-fourier-pade-approximation), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R14SP3
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Calculus 的更多信息
版本 已发布 发行说明
1.0.0.0