Feature Ranking for SimBiology
版本 1.0.2 (283.3 KB) 作者:
Florian Augustin
Rank importance of parameters in a SimBiology model for parameter estimation.
Feature Ranking
Copyright 2023 The MathWorks, Inc.
Rank importance of parameters in a SimBiology model for parameter estimation. FeatureRanking computes
- MRMR (minimum redundancy maximum relevance, [1])
- NCA (neighborhood component analysis, [2])
- F-TEST based feature ranking.
The ranking scores are computed from parameter samples and associated model simulations. The parameter samples are generated using a SimBiology.Scenarios object, the associated model simulations are computed using a SimBiology.SimFunction.Getting Started
Read and run driver.mlx for more details for how to use compute and plot ranking scores.
Help
After installing this MATLAB Add-On, you can also type
>> help FeatureSelection
>> help FeatureSelection.histogram
Requirements
This feature is supported in MATLAB® versions R2022a and later. Required products are SimBiology® and Statistics And Machine Learning Toolbox™.
References
[1] Ding C. and Peng H., Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computer Biology 2005; 3(2):185–205.
[2] Yang W., Wang K. and Zuo. W., Neighborhood component feature selection for high-dimensional data. Journal of Computers 2012; 7(1):161-168.
引用格式
Florian Augustin (2024). Feature Ranking for SimBiology (https://www.mathworks.com/matlabcentral/fileexchange/124755-feature-ranking-for-simbiology), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2022a
与 R2022a 及更高版本兼容
平台兼容性
Windows macOS Linux标签
社区
SimBiology 社区中有更多文件
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!+ranking
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.2 | Use 'results' instead of 'ranking' as out variable name in the example. |
|
|
1.0.1 | Fix: remove empty axes in histogram plots when reducing the number of plotted parameters via the NumParameters name-value argument. |
|
|
1.0 |
|