Mitigation of adversarial attacks: monitoring smart grids

版本 1.0.0 (4.0 MB) 作者: BERGHOUT Tarek
These codes presents a deep learning approach based robust data engineering for mitigation of adversarial attacks and wide area monitoring.
152.0 次下载
更新时间 2023/6/7

查看许可证

These files describe an experiment performed on phasor measurement unites dataset that is made publicly available . The goal of the experiment is to train a deep network to be resilient against any adversarial attacks. A specific Robust feature engineering and a deep learning are involved in model reconstructions. fast gradient sign method and basic iterative method are involved in this case.
Notes: (i) To be able to produce experiments provided in of these codes, you have to run the "*.m" files in the directory in alphabetical order. (ii) Then you can plot results starting by any "plot...*.m" files.
link to the original paper:
Please cite our work as:
Berghout, T.; Benbouzid, M.; Amirat, Y. Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach. Electronics 2023, 12, 2554. https://doi.org/10.3390/electronics12122554

引用格式

Berghout, Tarek, et al. “Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach.” Electronics, vol. 12, no. 12, MDPI AG, June 2023, p. 2554, doi:10.3390/electronics12122554.

查看更多格式
MATLAB 版本兼容性
创建方式 R2023a
与 R2018a 及更高版本兼容
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0