Schwarz-Christoffel Toolbox
版本 3.1.3 (346.7 KB) 作者:
Toby Driscoll
Computes conformal maps to polygons, allowing easy solution of Laplace's equation.
The Schwarz-Christoffel transformation is a recipe for a conformal map to a region bounded by a polygon. They can be computed to very high accuracy in little time. These maps can make certain Laplace boundary value problems trivial to solve on such domains.
Example:
p = polygon([0 i -1+i -1-i 1-i 1]); % L-shaped region
f = diskmap(p); % find map
plot(f) % visualize it
phi = lapsolve(p,[1 nan 4 3 nan 2]); % solve a BVP
[t,x,y] = triangulate(p);
trisurf(t,x,y,phi(x+i*y)); % see it
引用格式
Toby Driscoll (2024). Schwarz-Christoffel Toolbox (https://github.com/tobydriscoll/sc-toolbox/releases/tag/v3.1.3), GitHub. 检索时间: .
MATLAB 版本兼容性
创建方式
R2007a
兼容任何版本
平台兼容性
Windows macOS Linux类别
在 Help Center 和 MATLAB Answers 中查找有关 Triangulation Representation 的更多信息
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!+sctool
@annulusmap
@annulusmap/private
@composite
@crdiskmap
@crdiskmap/private
@crrectmap
@crrectmap/private
@diskmap
@diskmap/private
@dscpolygons
@extermap
@extermap/private
@hplmap
@hplmap/private
@moebius
@polygon
@rectmap
@rectmap/private
@riesurfmap
@riesurfmap/private
@scmap
@scmapdiff
@scmapinv
@stripmap
@stripmap/private
tests
无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
3.1.3 | See release notes for this release on GitHub: https://github.com/tobydriscoll/sc-toolbox/releases/tag/v3.1.3 |
||
1.1.0.0 | Now accessing the Github repository. |
|
|
1.0.0.0 | Previous resubmission was missing critical files. |
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。