Schwarz-Christoffel Toolbox

版本 3.1.3 (346.7 KB) 作者: Toby Driscoll
Computes conformal maps to polygons, allowing easy solution of Laplace's equation.
7.8K 次下载
更新时间 2023/7/17
The Schwarz-Christoffel transformation is a recipe for a conformal map to a region bounded by a polygon. They can be computed to very high accuracy in little time. These maps can make certain Laplace boundary value problems trivial to solve on such domains.
Example:
p = polygon([0 i -1+i -1-i 1-i 1]); % L-shaped region
f = diskmap(p); % find map
plot(f) % visualize it
phi = lapsolve(p,[1 nan 4 3 nan 2]); % solve a BVP
[t,x,y] = triangulate(p);
trisurf(t,x,y,phi(x+i*y)); % see it

引用格式

Toby Driscoll (2024). Schwarz-Christoffel Toolbox (https://github.com/tobydriscoll/sc-toolbox/releases/tag/v3.1.3), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2007a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Triangulation Representation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

+sctool

@annulusmap

@annulusmap/private

@composite

@crdiskmap

@crdiskmap/private

@crrectmap

@crrectmap/private

@diskmap

@diskmap/private

@dscpolygons

@extermap

@extermap/private

@hplmap

@hplmap/private

@moebius

@polygon

@rectmap

@rectmap/private

@riesurfmap

@riesurfmap/private

@scmap

@scmapdiff

@scmapinv

@stripmap

@stripmap/private

tests

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
3.1.3

See release notes for this release on GitHub: https://github.com/tobydriscoll/sc-toolbox/releases/tag/v3.1.3

1.1.0.0

Now accessing the Github repository.

1.0.0.0

Previous resubmission was missing critical files.

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库