mRMR Feature Selection (using mutual information computation)

版本 1.0.0.0 (523.4 KB) 作者: Hanchuan Peng
This is a cross-platform version of mimimum-redundancy maximum-relevancy feature selection
22.5K 次下载
更新 2007/4/19

无许可证

This package is the mRMR (minimum-redundancy maximum-relevancy) feature selection method in (Peng et al, 2005 and Ding & Peng, 2005, 2003), whose better performance over the conventional top-ranking method has been demonstrated on a number of data sets in recent publications. This version uses mutual information as a proxy for computing relevance and redundancy among variables (features). Other variations such as using correlation or F-test or distances can be easily implemented within this framework, too.

Hanchuan Peng, Fuhui Long, and Chris Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 8, pp.1226-1238, 2005. [PDF]

Ding C., and Peng HC, "Minimum redundancy feature selection from microarray gene expression data," Journal of Bioinformatics and Computational Biology,
Vol. 3, No. 2, pp.185-205, 2005. [PDF]

Ding, C and Peng HC, Proc. 2nd IEEE Computational Systems Bioinformatics Conference (CSB 2003),
pp.523-528, Stanford, CA, Aug, 2003.

引用格式

Hanchuan Peng (2026). mRMR Feature Selection (using mutual information computation) (https://ww2.mathworks.cn/matlabcentral/fileexchange/14608-mrmr-feature-selection-using-mutual-information-computation), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R14SP3
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 QSP, PKPD, and Systems Biology 的更多信息
版本 已发布 发行说明
1.0.0.0

correct some typos