MyFisher23

版本 2.0.0.0 (14.0 KB) 作者: Giuseppe Cardillo
A very compact routine for Fisher's exact test on 2x3 contingency table
3.6K 次下载
更新时间 2018/5/6

Fisher's exact test of 2x3 contingency tables permits calculation of precise probabilities in situation where, as a consequence of small cell frequencies, the much more rapid normal approximation and chi-square calculations are liable to be inaccurate. The Fisher's exact test involves the computations of several factorials to obtain the probability of the observed and each of the more extreme tables. Factorials growth quickly, so it's necessary use logarithms of factorials. This computations is very easy in Matlab because x!=gamma(x+1) and log(x!)=gammaln(x+1). This function is fully vectorized to speed up the computation.
Syntax: p=myfisher23(x)

Inputs:
X - 2x3 data matrix
Outputs:
- Three p-values

Created by Giuseppe Cardillo
giuseppe.cardillo-edta@poste.it

To cite this file, this would be an appropriate format: Cardillo G. (2007) MyFisher23: a very compact routine for Fisher's exact test on 2x3 matrix http://www.mathworks.com/matlabcentral/fileexchange/15399

引用格式

Giuseppe Cardillo (2024). MyFisher23 (https://github.com/dnafinder/myfisher23), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2006b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Hypothesis Tests 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
2.0.0.0

inputparser; table implementation; github link

1.6.0.0

reuploading

1.5.0.0

Changes in description

1.4.0.0

Actually, the function also computes the mid-P correction to make the test less conservative.

1.3.0.0

Actually, the function also computes the mid-P correction to make the test less conservative.

1.2.0.0

little improvements in tables enumeration

1.1.0.0

Changes in help section

1.0.0.0

Speeding up using gammaln function and vectorization.

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库