This Simulink model represents the Van der Pol oscillator described by the following differential equation
x'' - m(1-x^2)x' + x = 0
where x=x(t) a function of time and m is a physical parameter.
One can easily observe that for m=0 the system becomes linear.
The user is advised to try different values for m and see the changes in the system behavior.
One can also change the initial values for x(0) and x'(0) and see if this changes the behavior of the system.
Notes: The refine factor has been changeg to 4 in order to produce a smoother simulation. Also do not forget to uncheck the "limit data points" option.
This is included in [1].
References:
[1] An introduction to Control Theory Applications Using Matlab, https://www.researchgate.net/publication/281374146_An_Introduction_to_Control_Theory_Applications_with_Matlab
[2] DIFFERENTIAL EQUATIONS,DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS, Hirsch, Smale, Devaney. Elsevier Academic Press.
引用格式
Lazaros Moysis (2024). Van der Pol Oscillator Simulink Model (https://www.mathworks.com/matlabcentral/fileexchange/155527-van-der-pol-oscillator-simulink-model), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2023b
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |