This code can be used to compute the bifurcation diagram for the Lorenz chaotic system using the local maxima method.
This is alternative method to plotting the points of intersection with a given plane. Here, we only compute the local maxima of a chosen state, and plot them.
The diagram is generated by simulating the system from fixed initial conditions, and after discarding the transient, finding the local peaks of a given state.
The code can be easily adapted to compute a continuation diagram, where after each simulation, the initial condition is set equal to the final value of the previous simulation.
The code can also be easily adapted to any chaotic system, not just the Lorenz. What you need to do is replace the lorenz call in the ode45 with any chaotic system of your choice.
For the classic method to generate the bifurcation diagram, see the video below
引用格式
Lazaros Moysis (2024). Bifurcation diagram for the Lorenz system (local maxima) (https://www.mathworks.com/matlabcentral/fileexchange/158081-bifurcation-diagram-for-the-lorenz-system-local-maxima), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2023b
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!