I share the MATLAB code that I wrote for symbolic calculations of the arbitrary reference frame transfer matrix. I hope you find it useful:
The code below will generate the transfer matrix to the arbitrary reference frame (Ks) for you (2:Kraus coefficients/1:Concordia coefficients):
(As you know: 2:magnitude-invariant transformation , 1: power-invariant transformation)
Now for example to calculate the term Ks.p(Ks-1) you can simply write simplify( Ks*diff(inv(Ks))) in the Command Window and your answer will be:
ans(t) =
[ 0, diff(theta(t), t), 0]
[ -diff(theta(t), t), 0, 0]
[ 0, 0, 0]
and by ω=diff(theta(t), t) we will have:
ans(t) =
[ 0, ω, 0]
[ -ω, 0, 0]
[ 0, 0, 0]
Have a nice time!
Hamed Najafi
引用格式
Hamed Najafi (2024). qd0 Reference Frame symbolic transfer matrix (https://www.mathworks.com/matlabcentral/fileexchange/160208-qd0-reference-frame-symbolic-transfer-matrix), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2020a
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |