Liver diseases represent a significant healthcare challenge, impacting millions globally and posing complexities in diagnosis. To address this global health concern, this paper introduces a groundbreaking enhancement to the Kepler Optimization Algorithm, termed I-KOA, designed specifically for feature selection in high-dimensional datasets. By harnessing the synergies of Opposition-Based Learning and a Local Escaping Operator grounded in the k-nearest Neighbor (kNN) classifier, I-KOA asserts itself as a potent tool for local exploitation, balanced exploration, and evasion of local optima. To our knowledge, this is the first work to exploit KOA as a feature selection method. Pioneering the utilization of KOA as a feature selection method, the paper rigorously tests I-KOA in two extensive experiments, tackling the complex CEC'22 benchmark suite functions and the intricate landscape of five liver disease datasets. Results underscore I-KOA's unparalleled performance, validated through the Friedman test, where it surpasses seven rival optimization algorithms. Achieving an outstanding overall classification accuracy of 93.46\%, Feature selection size of 0.1042, sensitivity of 97.46\%, precision of 94.37\%, and F-score of 90.35\% across the liver disease datasets, I-KOA's randomized algorithm ensures robust feature selection, striking a compelling balance between subset size and classification efficacy. Acknowledging computational demands and generalization nuances, I-KOA is a formidable tool ready to revolutionize medical diagnosis and decision support systems. The open source codes of the proposed I-KOA are available at
引用格式
Prof. Dr. Essam H Houssein (2025). Improved Kepler Optimization Algorithm (https://ww2.mathworks.cn/matlabcentral/fileexchange/161376-improved-kepler-optimization-algorithm), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2023b
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!