Detect Anomalies in Text Data Using Variational Autoencoder

版本 1.0 (134.7 KB) 作者: Sohini Sarkar
This example shows how to detect out-of-distribution text data using a variational autoencoder (VAE).
16.0 次下载
更新时间 2024/3/27

Detect Anomalies in Text Data Using Variational Autoencoder (VAE) in MATLAB® Open in MATLAB Online

This example shows how to detect out-of-distribution text data using a variational autoencoder (VAE).

Overview

VAEs are a neural network architecture composed of two parts:

  • An encoder that encodes data in a lower-dimensional parameter space.
  • A decoder that reconstructs the input data by mapping the lower-dimensional representation back into the original space.

You can use a VAE to detect anomalies in your dataset. To do this, train a VAE on your data. Then, encode and decode a test data point. Compare the output of the decoder with the input data. If the input and output are similar, then the data is in-distribution. If the input and output are dissimilar, then the data is out-of-distribution, or anomalous.

This example includes three steps.

  1. Load and preprocess the text data.
  2. Set up and train the encoder and decoder networks.
  3. Use the VAE to detect anomalies in test data

Setup

Clone the repository in a local directory. If you would like to use this repository with MATLAB Online, clink Open in MATLAB Online

The main live script is AnomalyDetectionwithTextusingVAE.mlx. The other .m files are supporting functions for sampling the latent space, projecting and reshaping after sampling from latent space, and initializations of the project and reshape layer. You can either open the .mlx for demo or open the .prj file which will automatically open .mlx file.

Before running the file, get the data using the following steps:

Required Products

  • MATLAB (R2023a or later)
  • Text Analytics Toolbox™ (R2023a or later)
  • Deep Learning Toolbox™ (R2023a or later)

Contact

Sohini Sarkar, ssarkar@mathworks.com

License

The license is available in license.txt file in this GitHub repository.

Community Support

MATLAB Central

Copyright 2024, The MathWorks, Inc.

引用格式

Sohini Sarkar (2024). Detect Anomalies in Text Data Using Variational Autoencoder (https://github.com/matlab-deep-learning/anomaly-detection-with-text-variational-autoencoder/releases/tag/v1.0), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2024a
兼容任何版本
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库