FPFS-AC
A New Classification Method Using Soft Decision-Making Based on an Aggregation Operator of Fuzzy Parameterized Fuzzy Soft Matrices
Citation: S. Memiş, S. Enginoğlu, and U. Erkan, 2022. A New Classification Method Using Soft Decision-Making Based on an Aggregation Operator of Fuzzy Parameterized Fuzzy Soft Matrices, Turkish Journal of Electrical Engineering and Computer Sciences, 30(3), 1165–1180. doi: https://doi.org/10.55730/1300-0632.3816
Abstract:
Recently, a precise and stable machine learning algorithm, i.e. eigenvalue classification method (EigenClass), has been developed by using the concept of generalised eigenvalues in contrast to common approaches, such as k-nearest neighbours, support vector machines, and decision trees. In this paper, we offer a new classification algorithm called fuzzy parameterized fuzzy soft aggregation classifier (FPFS-AC) to combine the modelling ability of soft decision-making (SDM) and classification success of generalised eigenvalues. FPFS-AC constructs a decision matrix by employing the similarity measures of fuzzy parameterized fuzzy soft matrices fpfs -matrices) and a generalised eigenvalue-based similarity measure. Then, it applies an SDM method based on the aggregation operator of fpfs -matrices to a decision matrix and classifies the given test sample. Afterwards, we perform an experimental study using 15 UCI datasets to manifest the success of our approach and compare FPFS-AC with the well-known and state-of-the-art classifiers (kNN, SVM, fuzzy kNN, EigenClass, and BM-fuzzy kNN) in terms of accuracy, precision, recall, macro F-score, micro F-score, and running time. Moreover, we statistically analyse the experimentally obtained data. Experimental and statistical results show that FPFS-AC outperforms the state-of-the-art classifiers in all the datasets concerning the five performance metrics.
引用格式
Samet Memis (2025). FPFS-AC (https://github.com/sametmemis/FPFS-AC/releases/tag/v1.0), GitHub. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.0 |
