Inverse Z transform

版本 1.0.0 (3.6 KB) 作者: ARF
Function izt calculates the numerical inverse Z-transform of a rational function of z^-1 at specified points.
9.0 次下载
更新时间 2024/6/4

查看许可证

Function izt calculates the numerical inverse Z-transform of a rational function of z^-1 at specified points using the partial fraction expansion method. It considers the region of convergence (ROC) of the Z-transform.
The Z-transform is assumed to have numerator and denominator coefficients p and q, respectively, arranged in increasing powers of z^-1. The ROC includes the point z0. 'nvec' is the array of input points, which can be a vector, matrix, or tensor. 'tol' specifies the computational error tolerance, with a default value set to 1e-6.
The Z-transform is defined as:
-1 -M
p(1) + p(2) * z + ... + p(M + 1) * z
X(z) = -----------------------------------------
-1 -N
q(1) + q(2) * z + ... + q(N + 1) * z
where M = numel(p) - 1 and N = numel(q) - 1.
Note: If X(z) includes positive powers of z in the numerator or denominator, it can be reformulated to the above structure by dividing the numerator and the denominator by the highest power of z.
Example: Suppose we want to calculate the inverse z transform of
-1 -2 -3
1+ 2z - z +z
X(z)= ---------------------------------, with ROC:1/6<|z|<1/2
-1 -2 -1
(1 - z + 1/4 z )(1 + 1/6 z )
at n = -3, 0, and 3. We have p = [1 2 -1 1] and q = conv([1 -1 1/4], [1 1/6]) = [1.0000 -0.8333 0.0833 0.0417]
To indicate the ROC we chose z0 = 1/4 which falls inside the ROC. We also set nvec = [-3 0 3]. Finally by executing
x = izt(p, q, z0, nvec)
we get
x =
214.5000 7.5625 0.0761
References:
A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice Hall, 3rd Ed. 2010.
A. R. Forouzan, "Region of convergence of derivative of z transform," IET Electronics Letters, vol. 52, no. 8, pp. 617-619.

引用格式

A. R. Fororouzan (2024). Inverse Z transform (https://www.mathworks.com/matlabcentral/fileexchange/<...>), MATLAB Central File Exchange. Retrieved June 4, 2024.

MATLAB 版本兼容性
创建方式 R2024a
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

版本 已发布 发行说明
1.0.0