This simplified Matlab demo code shows how to use the new Flying Foxes Optimization Algorithm to solve clustering problems.
The only thing researchers need to do is to replace the data in "mydata.xlsx" with their data, and then run the FFOclustering.m file in the Matlab platform.
Researchers are allowed to use this code in their research projects,
as long they cite as:
Zervoudakis, K., & Tsafarakis, S. (2025). Customer segmentation using flying fox optimization algorithm. Journal of Combinatorial Optimization, 49(1), 1–20. https://doi.org/10.1007/S10878-024-01243-6
AND
Zervoudakis, K., Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Engineering with Computers (2022). https://doi.org/10.1007/s00366-021-01554-w
For more information: https://sites.google.com/view/kzervoudakis/research/metaheuristics/flying-fox-optimizer
引用格式
Konstantinos Zervoudakis (2025). Clustering using Flying Foxes Optimization Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/176949-clustering-using-flying-foxes-optimization-algorithm), MATLAB Central File Exchange. 检索时间: .
Zervoudakis, K., & Tsafarakis, S. (2025). Customer segmentation using flying fox optimization algorithm. Journal of Combinatorial Optimization, 49(1), 1–20. https://doi.org/10.1007/S10878-024-01243-6
Zervoudakis, K., Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Engineering with Computers (2022). https://doi.org/10.1007/s00366-021-01554-w
MATLAB 版本兼容性
创建方式
R2024b
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!