DiffusionMap Toolbox
This toolbox provides a simple, flexible way to perform diffusion map analysis—an approach to dimensionality reduction that preserves local data geometry. The functions included allow you to compute a similarity matrix, apply various normalization schemes, and extract diffusion map coordinates through eigenvector decomposition. An example script (`example1swissroll.m` or `example1_swissroll.mlx`) demonstrates usage on a classic Swiss roll dataset, illustrating how to reveal underlying low-dimensional structure.
Key Features
- Calculation of similarity matrices with multiple distance metrics
- Options for row or column normalization
- Different tuning parameters (e.g., number of nearest neighbors, Laplacian type)
- Example scripts to get started quickly
License
Distributed under the MIT License. See `LICENSE.txt` for details.
引用格式
Alex Ryabov (2026). Diffusion map (https://ww2.mathworks.cn/matlabcentral/fileexchange/180223-diffusion-map), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2024b
与 R2014b 及更高版本兼容
平台兼容性
Windows macOS Linux标签
examples
doc
| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.11 | minor changes in documentation |
|
|
| 1.1 | minor changes |
|
|
| 1.0 |
|
