Adaptive Memetic Binary Optimization (AMBO) Algorithm
版本 1.0.0 (147.7 KB) 作者:
Ahmet Cevahir ÇINAR
A novel adaptive memetic binary optimization algorithm for feature selection
AMBO: Adaptive Memetic Binary Optimization Algorithm for Feature Selection
This repository contains the official MATLAB implementation of the AMBO (Adaptive Memetic Binary Optimization) algorithm proposed in the paper:
A. C. Çınar, A novel adaptive memetic binary optimization algorithm for feature selection, Artificial Intelligence Review, 2023. DOI: 10.1007/s10462-023-10482-8
📌 About the Project
AMBO is a pure binary metaheuristic algorithm specifically designed for feature selection tasks. It uses:
- Adaptive crossover mechanisms (single-point, double-point, uniform)
- Canonical mutation
- Logic gate-based local search using AND, OR, and XOR for balancing exploration and exploitation.
It has been tested on 21 benchmark datasets and outperformed several state-of-the-art algorithms including BPSO, GA variants, BDA, BSSA, and BGWO.
📂 Files
- Main.m: Main script to run the algorithm.
- datasets/: Sample datasets used in the paper.
- results/: Contains output logs and performance results.
🧪 Requirements
- MATLAB R2021a or later
- Statistics and Machine Learning Toolbox (for KNN)
📈 Citation
If you use this code or data in your research, please cite the paper as:
@article{cinar2023ambo,
title={A novel adaptive memetic binary optimization algorithm for feature selection},
author={Cinar, Ahmet Cevahir},
journal={Artificial Intelligence Review},
year={2023},
doi={10.1007/s10462-023-10482-8}
}
🤝 Collaboration
Contributions, ideas, and collaborations are welcome!
Feel free to contact me for research partnerships, extensions, or comparative benchmarking:
引用格式
@article{cinar2023ambo, title={A novel adaptive memetic binary optimization algorithm for feature selection}, author={Cinar, Ahmet Cevahir}, journal={Artificial Intelligence Review}, year={2023}, doi={10.1007/s10462-023-10482-8} }
MATLAB 版本兼容性
创建方式
R2025a
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!无法下载基于 GitHub 默认分支的版本
| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.0.0 |
|
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
