% Evaluates K-th integer-order derivatives of the Mittag-Leffler (ML) function
%
% E = ML(Z,ALPHA,K) evaluates K-th order derivative of the ML function with
% one parameter ALPHA at each entry of the vector Z; ALPHA must be any real
% and positive scalar value and Z any vector of real or complex values.
%
% E = ML(Z,ALPHA,BETA,K) evaluates K-th order derivative of the ML function
% with two parameters ALPHA and BETA at a scalar argument Z or at each
% entry of Z if Z is a vector; ALPHA must be a real and positive scalar,
% BETA a real scalar value and Z any vector or real or complex values.
%
% Note that the code may result poorly accurate for derivatives of very
% high order K.
%
% TECHNICAL NOTES:
%
% Derivatives of the Mittag-Leffler (ML) function are computed using an
% algorithm that combines a summation formula based on the Prabhakar
% function with a numerical Laplace transform inversion method [2]. This
% combination is guided by the derivatives balancing technique introduced
% in [1]. A detailed description of the algorithm, along with relevant
% properties and applications of ML derivatives, is provided in [3].
%
% If this code is used in research or publications, please cite it as [3].
%
% REFERENCES
%
% [1] R. Garrappa and M. Popolizio, Computing the matrix Mittag–Leffler
% function with applications to fractional calculus, Journal of Scientific
% Computing, 2018, 17(1), 129-153
%
% [2] R. Garrappa, Numerical Evaluation of two and three parameter
% Mittag-Leffler functions, SIAM Journal of Numerical Analysis, 2015,
% 53(3), 1350-1369.
%
% [3] D.Biolek, R.Garrappa, F.Mainardi, M.Popolizio, Derivatives of
% Mittag-Leffler functions: theory, computation and applications, Nonlinear
% Dynamics, to appear
%
% Please, report any problem or comment to :
% roberto dot garrappa at uniba dot it
%
% Copyright (c) 2025
%
% Authors:
% Roberto Garrappa (University of Bari, Italy)
% roberto dot garrappa at uniba dot it
% Homepage: https://www.dm.uniba.it/members/garrappa
%
%
% Revision: 1.0 - Date: July 29, 2025
引用格式
Roberto Garrappa (2025). Mittag-Leffer derivative (https://ww2.mathworks.cn/matlabcentral/fileexchange/181636-mittag-leffer-derivative), MATLAB Central File Exchange. 检索时间: .
D.Biolek, R.Garrappa, F.Mainardi, M.Popolizio, Derivatives of Mittag-Leffler functions: theory, computation and applications, Nonlinear Dynamics, to appear
MATLAB 版本兼容性
创建方式
R2025a
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |