- COA exploration: Each agent lays eggs within a local radius tied to search-range and egg share; new eggs are sampled around parents, the worst fraction is discarded, and the population is trimmed back to a fixed size.
- COA migration: The population is clustered into habitats; a focal habitat is chosen by average fitness, and all agents move a controlled step toward its best member with a small random directional deviation.
- GWO exploitation: Inside each habitat, three leaders (alpha, beta, delta) guide the rest; agents update their positions toward the leaders using time-decreasing influence to intensify search near promising areas.
- Hybrid loop & constraints: Each iteration evaluates fitness, clusters, migrates, lays eggs and culls, merges and truncates, then applies the GWO update—while positions are clamped to the variable bounds.
- Convergence tracking: The global best-so-far (strongest alpha across habitats) is updated after the full iteration and logged to produce a monotone convergence curve for minimization.
引用格式
Pavel (2025). Cuckoo optimization algorithm via Grey wolf optimizer (https://ww2.mathworks.cn/matlabcentral/fileexchange/181972-cuckoo-optimization-algorithm-via-grey-wolf-optimizer), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2025a
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |