Juhi Optimization Algorithm (JOA)

版本 1.0.0 (4.1 KB) 作者: praveen kumar
The main inspiration of this algorithm comes from the juhi (Jasminum auriculatum)plant.
17.0 次下载
更新时间 2025/10/6

查看许可证

Mathematical Model
Let:
  • NNN = number of plants (population)
  • XiX_iXi = position of plant iii in the search space
  • f(Xi)f(X_i)f(Xi) = fitness (objective function)
  • XbestX_{best}Xbest = best position found so far
  • ttt = current iteration, TmaxT_{max}Tmax = maximum iterations
Mathematical Model
Let:
  • NNN = number of plants (population)
  • XiX_iXi = position of plant iii in the search space
  • f(Xi)f(X_i)f(Xi) = fitness (objective function)
  • XbestX_{best}Xbest = best position found so far
  • ttt = current iteration, TmaxT_{max}Tmax = maximum iterations
1. Root Expansion Phase (Exploration)
Plants spread roots randomly to explore nutrients:
Xinew=Xi+αrand(1,D)(XrandXi)X_i^{new} = X_i + \alpha \cdot rand(1, D) \cdot (X_{rand} - X_i)Xinew=Xi+αrand(1,D)(XrandXi)
where
  • α\alphaα = root expansion rate (0.5–1.0),
  • XrandX_{rand}Xrand = random plant position.
2. Stem Growth Phase (Transition)
Plants grow toward light and resources:
Xinew=Xi+βrand(1,D)(XbestXi)X_i^{new} = X_i + \beta \cdot rand(1, D) \cdot (X_{best} - |X_i|)Xinew=Xi+βrand(1,D)(XbestXi)
where
  • β\betaβ = growth factor (0.3–0.7).
3. Flower Blooming Phase (Exploitation)
Flowers bloom around the best nutrient/light zone:
Xinew=Xbest+γ(randn(1,D))X_i^{new} = X_{best} + \gamma \cdot (randn(1, D))Xinew=Xbest+γ(randn(1,D))
where
  • γ=γ0(1tTmax)\gamma = \gamma_0 (1 - \frac{t}{T_{max}})γ=γ0(1Tmaxt), decreasing over time to refine the search.
🌸 Algorithm Steps
  1. Initialize population XiX_iXi randomly within bounds [lb,ub][lb, ub][lb,ub].
  2. Evaluate fitness f(Xi)f(X_i)f(Xi).
  3. Identify XbestX_{best}Xbest.
  4. Repeat until maximum iterations:
  • Perform Root Expansion for a fraction of plants.
  • Perform Stem Growth for middle-range plants.
  • Perform Flower Blooming for top-performing plants.
  • Update XbestX_{best}Xbest.
  1. Return XbestX_{best}Xbest as optimal solution.
1. Root Expansion Phase (Exploration)
Plants spread roots randomly to explore nutrients:
Xinew=Xi+αrand(1,D)(XrandXi)X_i^{new} = X_i + \alpha \cdot rand(1, D) \cdot (X_{rand} - X_i)Xinew=Xi+αrand(1,D)(XrandXi)
where
  • α\alphaα = root expansion rate (0.5–1.0),
  • XrandX_{rand}Xrand = random plant position.
2. Stem Growth Phase (Transition)
Plants grow toward light and resources:
Xinew=Xi+βrand(1,D)(XbestXi)X_i^{new} = X_i + \beta \cdot rand(1, D) \cdot (X_{best} - |X_i|)Xinew=Xi+βrand(1,D)(XbestXi)
where
  • β\betaβ = growth factor (0.3–0.7).
3. Flower Blooming Phase (Exploitation)
Flowers bloom around the best nutrient/light zone:
Xinew=Xbest+γ(randn(1,D))X_i^{new} = X_{best} + \gamma \cdot (randn(1, D))Xinew=Xbest+γ(randn(1,D))
where
  • γ=γ0(1tTmax)\gamma = \gamma_0 (1 - \frac{t}{T_{max}})γ=γ0(1Tmaxt), decreasing over time to refine the search.

引用格式

praveen kumar (2025). Juhi Optimization Algorithm (JOA) (https://ww2.mathworks.cn/matlabcentral/fileexchange/182214-juhi-optimization-algorithm-joa), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2025b
兼容任何版本
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0