Histogram-based class separability measure

The provided functions demonstrate a histogram-based measure for class separability, given the sampl
3.9K 次下载
更新时间 2008/2/18

查看许可证

The provided functions demonstrate a histogram-based measure for class separability, given the samples from two classes (binary classification problem). The proposed error classification estimation method is described in (B) and it is based on estimating the pdf of each class using histograms. The function that estimates the class seperability method is computeHistError(). Function theoreticalError() computes the theoretical error for two Gaussian distributed classes. Function testClassSeperability() calls the other two functions and displays the results for two Gaussian distributed functions. It has to be noted that computeHistError() can be used for any kind of class distribution, since it estimates the pdf of each class using the histogram method.

We can use computeHistError() in order to estimate the separabilty of a binary classification problem, given the training samples of the two classes.

-------------------------

Example

In order to execute the demo, call the testClassSeperability():

testClassSeperability(10000,1.0, 1.0, 3.0, 2.0, 1);

-------------------------------
Theodoros Giannakopoulos
http:/www.di.uoa.gr/~tyiannak
-------------------------------

引用格式

Theodoros Giannakopoulos (2024). Histogram-based class separability measure (https://www.mathworks.com/matlabcentral/fileexchange/18791-histogram-based-class-separability-measure), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2007b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Data Distribution Plots 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0