Lidar Imaging Case Study(with Geometric Distortion Correction)
Scientists at Brookhaven National Laboratory developed scanning Lidar equipment to detect toxic clouds but they needed application software to pinpoint the size and location of detected plumes. In this case study, MATLAB and the Image Processing Toolbox were used to analyze some raw scan data. Background was removed by ensemble median averaging and image subtraction. Clouds were segmented by statistical based thresholding. Detected clouds were visualized in 2 and 3 dimensions. In order to accurately determine plume dimensions, a model was developed to understand geometric distortions caused by the non-uniform polar coordinate system of the laser scanner. The model, which used spatial transformations, was first validated using a known, synthetic test image to ensure accuracy of the algorithm. The spatial transforms were then used to correct for geometric distortions in actual scan data. With the MATLAB code and example data in this package you can follow the steps used for this application.
引用格式
Robert Bemis (2024). Lidar Imaging Case Study(with Geometric Distortion Correction) (https://www.mathworks.com/matlabcentral/fileexchange/2072-lidar-imaging-case-study-with-geometric-distortion-correction), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- Industries > Automotive >
- Aerospace and Defense > Aerospace Blockset > Guidance, Navigation, and Control (GNC) >
- Robotics and Autonomous Systems > Automated Driving Toolbox > Detection and Tracking > Lidar Processing >
- Automotive > Automated Driving Toolbox > Detection and Tracking > Lidar Processing >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!