共享 'Dynamic Optimization'
This book starts with a review of parameter optimization and then treats dynamic optimization, first with fixed final time and no constraints, next with terminal contraints, and finally with terminal constraints and open final time. This is followed by chapters on linear-quadratic problems and dynamic programming. The book concludes with chapters covering neighboring-optimal feedback control, inequality constraints, and singular problems.
For a full book description and ordering information, please refer to http://www.mathworks.com/support/books/book1532.jsp.
引用格式
Arthur Bryson (2026). Dynamic Optimization (https://ww2.mathworks.cn/matlabcentral/fileexchange/2429-dynamic-optimization), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!- E02_3_3.m
- E02_4_1.m
- E02_4_1z.m
- E03_4_1.m
- E03_4_2.m
- E04_3_1.m
- E04_3_2.m
- E04_5_1.m
- E04_5_2.m
- E04_5_3.m
- E04_5_3n.m
- E04_5_4.m
- E04_6_1.m
- E04_6_2.m
- E04_6_3.m
- E04_7_1.m
- E04_7_2.m
- E04_7_3.m
- E05_2_3.m
- E05_5_2.m
- E08_2_1.m
- E08_3_1.m
- E08_7_2.m
- E09_3_1a.m
- E09_3_2.m
- E09_3_2a.m
- E09_3_2b.m
- F04_05.m
- F04_06.m
- F04_09m.m
- F06_08.m
- F06_10.m
- F08_13.m
- F08_16.m
- P10_2_3.m
- P10_3_3.m
- P10_3_3a.m
- P10_3_3b.m
- P1_2_02.m
- P1_2_03.m
- P1_2_04.m
- P1_2_05.m
- P1_2_11z.m
- P1_2_12.m
- P1_2_18.m
- P1_3_03.m
- P1_3_04.m
- P1_3_15.m
- P1_3_16.m
- P1_3_23.m
- P2_1_3a.m
- P2_2_2z.m
- P2_2_3a.m
- P2_5_6b.m
- P2_5_7b.m
- P2_5_7f.m
- P2_5_7n.m
- P2_6_17F.m
- P2_6_9F.m
- P2_6_9N.m
- P2_6_9b.m
- P2_7_1.m
- P2_7_17.m
- P2_7_2.m
- P2_7_22a.m
- P2_7_23A.m
- P2_7_23b.m
- P2_7_2a.m
- P2_7_4.m
- P2_7_5.m
- P2_7_6.m
- P3_1_03a.m
- P3_2_03a.m
- P3_2_09a.m
- P3_3_19b.m
- P3_3_19c.m
- P3_4_01.m
- P3_4_17.m
- P3_4_20b.m
- P3_4_21.m
- P3_4_22a.m
- P3_4_22b.m
- P3_4_23b.m
- P3_5_05b.m
- P3_5_05f.m
- P3_5_05n.m
- P3_5_09b.m
- P3_5_12b.m
- P3_6_04n.m
- P3_6_05n.m
- P3_6_06n.m
- P3_6_07n.m
- P3_6_08n.m
- P3_6_09n.m
- P3_6_11n.m
- P3_6_12n.m
- P3_6_22F.m
- P3_6_22b.m
- P3_6_22n.m
- P3_6_25b.m
- P3_6_25f.m
- P3_6_25n.m
- P4_2_01.m
- P4_2_02.m
- P4_2_03.m
- P4_2_03a.m
- P4_2_04.m
- P4_3_03.m
- P4_3_03a.m
- P4_3_06.m
- P4_3_06a.m
- P4_3_07.m
- P4_3_09.m
- P4_3_12.m
- P4_4_01.m
- P4_4_02.m
- P4_4_03.m
- P4_4_04.m
- P4_4_05.m
- P4_4_06.m
- P4_4_07.m
- P4_4_08.m
- P4_4_09.m
- P4_4_10.m
- P4_4_14.m
- P4_5_01.m
- P4_5_02.m
- P4_5_03.m
- P4_5_04.m
- P4_5_05.m
- P4_5_06.m
- P4_5_07.m
- P4_5_08.m
- P4_5_09.m
- P4_5_10.m
- P4_5_11.m
- P4_5_12.m
- P4_5_14.m
- P4_5_17.m
- P4_5_18.m
- P4_5_19.m
- P4_5_21.m
- P4_5_22.m
- P4_5_23.m
- P4_5_24.m
- P4_5_24a.m
- P4_5_25.m
- P4_6_06b.m
- P4_6_06f.m
- P4_6_06n.m
- P4_6_07b.m
- P4_6_07f.m
- P4_6_07n.m
- P4_6_09b.m
- P4_6_09f.m
- P4_6_09n.m
- P4_7_12b.m
- P4_7_12f.m
- P4_7_12n.m
- P4_7_17b.m
- P4_7_17f.m
- P4_7_17n.m
- P4_7_18b.m
- P4_7_18f.m
- P4_7_18n.m
- P4_7_21b.m
- P4_7_21f.m
- P4_7_21n.m
- P4_7_22b.m
- P4_7_22f.m
- P4_7_22n.m
- P4_7_23b.m
- P4_7_23f.m
- P4_7_23n.m
- P4_7_24b.m
- P4_7_24f.m
- P4_7_24n.m
- P5_2_04c.m
- P5_2_04e.m
- P5_2_06c.m
- P5_2_06d.m
- P5_2_06e.m
- P5_2_07c.m
- P5_2_07e.m
- P5_2_07f.m
- P5_2_08c.m
- P5_2_08d.m
- P5_2_08e.m
- P5_2_09c.m
- P5_2_09e.m
- P5_2_09f.m
- P5_2_10c.m
- P5_2_10e.m
- P5_2_10f.m
- P5_2_20a.m
- P5_2_20b.m
- P5_2_22.m
- P5_2_23.m
- P5_3_04.m
- P5_3_20.m
- P5_3_21.m
- P5_3_24.m
- P5_4_01.m
- P5_4_06.m
- P5_4_06a.m
- P5_4_06r.m
- P5_4_07.m
- P5_4_07r.m
- P5_4_09r.m
- P5_4_10a.m
- P5_4_10b.m
- P5_4_10r.m
- P5_4_16r.m
- P5_4_20.m
- P5_4_21.m
- P5_5_04.m
- P5_5_20.m
- P5_5_21.m
- P6_2_11.m
- P6_2_12.m
- P6_2_13.m
- P6_2_14.m
- P6_2_15.m
- P6_3_07.m
- P6_3_15.m
- P7_3_5E.m
- P7_3_6a.m
- P8_4_04.m
- P8_5_1.m
- P8_5_17.m
- P8_5_22a.m
- P8_5_23A.m
- P8_5_23b.m
- P8_5_4.m
- P8_5_5.m
- P8_5_6.m
- P8_7_1.m
- P8_7_2.m
- P8_7_3.m
- P9_2_1.m
- P9_2_3.m
- P9_3_08.m
- P9_3_13.m
- P9_3_14.m
- P9_3_14a.m
- ZERM_NOM.m
- airc_c(p,s0,Vc,lc)
- airc_f(p,s0,Vc,lc)
- calgld(t,s,flag,lx,ly)
- calgldt(sg,s,t,flg)
- calgldte(t,y)
- cantruss_c(p,W)
- cantruss_f(p,W)
- chkhess.m
- climb0(u,s,t,flg)
- climb0s(t,s)
- climb_c(p,N,Vo,ho,Vf,hf)
- climb_f(p,N,Vo,ho,Vf,hf)
- climbx0(al,s,t,flg)
- climbx0s(al,s,t,flg)
- clmb727(y)
- clmb_727(y,flg)
- clmb_727_c(p,flg)
- clmb_727_f(p,flg)
- cltn(y)
- cltn_c(y,ga,flg)
- cltn_f(y,ga,flg)
- contents.m
- cvrtj(A,B,Q,N,R,Ts)
- dblin_c(p,N)
- dblint(t,s,flg,am)
- dblint_c(p,s0)
- dblint_f(p,s0)
- dblint_s(t,s,flag,p)
- dfrmt_c(p,xf,yf)
- dfrmt_f(p,xf,yf)
- dgeo1(be,th0,phf)
- dgeo2(p,th0,thf,phf)
- dgeo2a(p,th0,thf,phf)
- dgeoc_c(be,th0,thf,phf)
- dgeoc_f(be,th0,phf)
- dgeoc_f(be,th0,thf,phf)
- dgeot(be,s,dt,t,flg)
- dgeot_c(p,th0,thf,phf)
- dgeot_f1(p,th0,thf,phf)
- dgeot_fa(p,th0,thf,phf)
- dip_mf(t,s)
- dop0b(sf,name,uf,s0,tf,N)
- dopbu(z0,name,s,la,dt,t)
- dopc(name,u,s0,tf,k,tol,mxit,eta)
- dopcb(p,name,uf,s0,tf,N)
- dopcn2(name,un,nu,s0,tf,tol)
- dopfu(p0,name,s,la,dt,t)
- drate(al,alm,eta)
- dtdp_c(th,s0,tf,N,gv,yf)
- dtdp_c(th,s0,tf,N,gv,yf)
- dtdp_f(th,s0,tf,N,gv,yf)
- dtdp_fz(th,s0,tf,N,gv,yf)
- dtdpgc(th,s,dt,t,flg)
- dtdpt_c(p,yf)
- dtdpt_c1(p,yf)
- dtdpt_f1(p,yf)
- dtdpt_fg(p,yf)
- dvdp_c(p,N,h)
- dvdp_f1(p,N,h)
- dzrm0z(u,s,dt,t,flg)
- dzrmt_f(p)
- e03_1_1.m
- e03_3_1.m
- e03_6_2.m
- e08_2_2.m
- e10_2_1n.m
- erzb_f(th0,xf)
- erzb_p(th0,xf)
- f02_11.m
- f02_12.m
- f03_02.m
- f03_04.m
- f03_05.m
- f03_08z.m
- f03_19.m
- f03_20.m
- f03_21.m
- f03_22.m
- f04_02.m
- f04_07.m
- f04_11.m
- f04_12.m
- f04_13.m
- f04_14.m
- f04_15.m
- f04_17.m
- f05_09.m
- f05_12.m
- f05_16.m
- f05_18.m
- f05_19.m
- f05_20.m
- f05_21.m
- f05_23.m
- f05_25.m
- f05_27.m
- f05_28.m
- f07_09.m
- f08_03.m
- f08_09.m
- f08_10.m
- f08_11.m
- f08_14.m
- f09_12.m
- f09_13.m
- f09_17.m
- f09_18.m
- f09_20.m
- f09_20m.m
- f09_22.m
- f09_23.m
- f10_04.m
- f10_13.m
- f10_13m.m
- f4_crus1(p,h)
- f4_cruse_c(p,flg)
- f4_cruse_f(p,flg)
- fop0(name,tu,u,tf,s0,k,told,tols,mxit)
- fop0_b(t,y,flag,tu,u,ts,s,name)
- fop0_f(t,s,flag,tu,u,name)
- fop0b(sf,name,s0,tf)
- fop0f(p,name,s0,tf)
- fop0n2(name,tu,uf,s0,tf,tol,mxit)
- fop0n2_b(t,y,flag,name,ts,uf,s)
- fop0n2_f(t,s,flag,name,tu,uf,K,sn)
- fopc(name,tu,u,tf,s0,k,told,tols,mxit,eta)
- fopc_b(t,y,flag,tu,u,ts,s,name,np)
- fopc_f(t,s,flag,tu,u,name)
- fopcf1(p,u0,s0,tf)
- fopcn(p,name,s0,tf)
- fopcnv(p,name,s0,tf,nc)
- fopt(name,tu,u,tf,s0,k,told,tols,mxit,eta)
- foptf(p,name,s0,nc)
- frm0y(u,s,t,flg)
- frm0ys(t,s)
- frmt_f(p,xf,yf)
- geo0y(u,s,t,flg)
- geo0ys(ph,s)
- geo1(u,s,t,flg)
- geoa(p)
- geoz(ph,th)
- gld0(al,s,t,flg)
- gld_c(p,s0)
- gld_f(p,s0)
- gld_s(t,s,flag,p)
- gldb_c(p,s0)
- gldb_f(p,s0)
- gldb_s(al,s,t,flg)
- gldce(t,y)
- glid1_c(p)
- glid1_f(p)
- glid_c(p,h0,V0)
- glid_f(p,h0,V0)
- hochb.m
- hochb_f(X,w,el,xe0,ye0)
- hochbps.m
- hochbps_f(X,w,el,xe0,ye0,ps)
- hochetf.m
- hochetf1(X,w,el,ts)
- hochs.m
- hochtf.m
- holdp(u,s,t,flg,xf)
- incantr(p,W)
- incantr_c(p,W)
- incantr_f(p,W)
- interpk(tk,K,t)
- invcantr(p,W)
- invp_c(p,th0,q0,N)
- invp_f(p,th0,q0,N)
- invp_f1(p,th0,q0,N)
- invtruss_c(p,W)
- invtruss_f(p,W)
- ip_c(ts,ep,umax)
- ip_c1(p,ep,umax)
- ip_c2(p,ep,umax)
- ip_f(p,ep,umax)
- ip_f(ts,ep,umax)
- ip_f1(p,ep,umax)
- ipe_c(p,s0)
- ipe_f(p,s0)
- ipen(u,s,t,flg)
- ipez(t,y,flag,ts,ep,umax)
- ipz(ts,ep,umax)
- lander.m
- lander_dyn(p,v0,Isp,Tmax)
- lander_sub(t,s,v0,Isp,Tmax)
- lapend(t,s)
- latturn.m
- latturn_c(p,s0,r0)
- latturn_f(p,s0,r0)
- latturn_s(u,s,t,flg)
- lqnmp(p)
- mar0(be,s,t,flg)
- mar0e(t,y)
- mar0s(t,s,flg,tn,ben,sn,K)
- marc0(be,s,t,flg)
- marc_c(be,s0,tf)
- marc_f(be,s0,tf)
- marce(t,y)
- marslin0(be,s,t,flg)
- marslin0e(t,y)
- marslinc(be,s,t,flg)
- mart_c(p,s0)
- mart_f(p,s0)
- mart_s(t,s,flag,p)
- maxalcte(t,y)
- maxalte(t,y)
- maxaltn(u,s,t,flg)
- maxaltnv(u,s,t,flg)
- maxclmb2(y)
- maxcltn1_f(p,ga,flg)
- maxcltn1_f(p,ga,flg)
- mdr_c(p,flg)
- mdr_f(p,flg)
- mehr.m
- mehr1.m
- mehr2.m
- mehra.m
- mehra1.m
- mehra1_c(p)
- mehra1_f(p)
- mehra_c(p)
- mehra_f(p)
- mfuel_c(p,N,v0,y0)
- mfuel_f(p,N,v0,y0)
- min_turn_c(p,ga,flg)
- min_turn_f(p,ga,flg)
- mindist(p)
- mindist_c(p)
- mindist_f(p)
- minfuel(p,xf,thf,tf)
- minfuela(t,s,flag,p)
- minfuelb(t,s)
- mintclm(u,s,t,flg)
- mintclm(u,s,t,flg)
- mintclte(t,y)
- minteclm(u,s,t,flg)
- minturn2(y)
- newton(u,el)
- nlpb_c(p)
- nlpb_f(p)
- odeh(name,u,s,tf)
- odehnuv(name,u,s,tf,nu)
- odeu(name,u,s0,tf)
- oscnmp(p)
- p10_2_2.m
- p10_3_1.m
- p1_2_06.m
- p1_3_06.m
- p2_3_7.m
- p2_4_7.m
- p2_7_3.m
- p2_7_8.m
- p2_7_9.m
- p3_4_19.m
- p4_4_16.m
- p4_5_16.m
- p4_7_16b.m
- p4_7_16f.m
- p4_7_16n.m
- p5_2_05a.m
- p5_2_05b.m
- p5_2_11m.m
- p5_2_21.m
- p5_2_24.m
- p5_2_24c.m
- p5_4_04.m
- p5_4_04a.m
- p7_3_7.m
- p7_7_3d.m
- p8_5_2.m
- p8_5_3.m
- p8_5_3a.m
- p8_5_8.m
- p8_5_9.m
- p8_7_6.m
- p8_7_9.m
- p9_3_02.m
- p9_3_03.m
- p9_3_04.m
- p9_3_04a.m
- p9_3_04b.m
- p9_3_04c.m
- p9_3_04d.m
- p9_3_04e.m
- p9_3_05.m
- p9_3_06.m
- p9_3_07.m
- p9_3_10a.m
- p9_3_11.m
- p9_3_11a.m
- p9_3_13a.m
- p9_3_13b.m
- p9_3_13m.m
- p9_3_15.m
- p9_3_16.m
- pend_c(p,th0,q0,N)
- pend_f(p,th0,q0,N)
- pop(name,y,k,tol,eta,mxit)
- popn(name,y,tol,mxit)
- qpilin_c(p,Q,R,G,c1)
- qpilin_f(p,Q,R,G,c1)
- rbclmb(u,s,t,flg)
- rbclmbe(t,y)
- rctelps2(y)
- readme.m
- rkt_c(p,N,hf)
- rkt_f(p,N,hf)
- robo(t,s,flag,mu,us0)
- robo1_c(p,mu,D)
- robo1_fg(p,mu,D)
- robot_c(p,N,D)
- robot_f(p,N,D)
- rosstest.m
- slbt2_c(y)
- slbt2_f(y)
- slbt_c(y,mu,flg)
- slbt_c1(y,ps)
- slbt_f(y,mu,flg)
- slbt_fz(y,mu,flg)
- snel(p,v1,v2,y1,y2,x2)
- snell_c(p)
- snell_f(p)
- stage.m
- stage_o(t,s)
- svic_c(p,N,el)
- svic_f(p,N,el)
- tdp0(th,s,t,flg)
- tdp0s(t,s)
- tdpc(th,s,t,flg)
- tdpcg(th,s,t,flg)
- tdpcgx(th,s,t,flg)
- tdpcx(th,s,t,flg)
- tdpgit(th,s,t,flg)
- tdpgt(th,s,t,flg)
- tdpit(th,s,t,flg)
- tdptgx(th,s,t,flg)
- tdpxt(th,s,t,flg)
- tlqh_b(t,y,flag,A,B,Q,N,R,Mf)
- tlqh_f(t,y,flag,A,B,t1k,K,uf)
- tlqhr(A,B,Q,N,R,tf,x0,Sf,Mf,psi,t1,tol)
- tlqs_b(t,y,flag,A,B,Q,N,R)
- tlqs_f(t,y,flag,A,B,tk,K,uf)
- trussa_c(p,W)
- trussa_f(p,W)
- tt_f(p,N,sf,uo)
- tt_fg(p,N,sf,uo)
- tto(d,u,s0,sfd)
- tvex1.m
- tvex1h.m
- tvex2.m
- tvex2_h(t,y)
- tvex_h(t,y)
- tvlqh(name,tf,s0,sf)
- tvlqs(name,tf,s0,Mf,Qf,psi)
- uh_60.m
- uh_60f.m
- vdp0y(u,s,t,flg)
- vdp0ys(t,s)
- vdpctd(ga,s,t,flg)
- vdpctd_c(p,a,tf,yf)
- vdpctd_f(p,a,tf,yf)
- vdpctdy(p)
- vdpctdy(p)
- vdpgtd_o(k,a,tf,t0)
- vdpgtdt(ga,s,t,flg)
- vdpgtdte(t,y)
- vdpt0y(u,s,t,flg)
- vdpt0ys(t,s)
- vdptd0(u,s,t,flg)
- vdptd0e(t,y)
- vdptd0y(u,s,t,flg)
- vdptd0ys(t,s)
- vdptdode(t,s,flg,p)
- vdpttd(ga,s,t,flg)
- yeo_pb.m
- zermc_f(p,tf,yf)
- zrm0_noc(t,ds,flg,tn,thn,sn,K)
- zrm0a(z,sf,yf,y0,tf)
- zrm0n2(uf,s,t,flg)
- zrm0y(th,s,t,flg)
- zrm_sina(t,s,flg,thf,tf)
- zrm_sine(t,y1)
- zrmpt(th,s,t,flg)
- zrmpt_f(p)
- zrmt_f(p)
| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.0.0.0 |
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
