Principal Component Analysis (PCA) in MATLAB

版本 1.0.0.0 (1.7 KB) 作者: Siamak Faridani
This is a demonstration of how one can use PCA to classify a 2D data set.
22.6K 次下载
更新时间 2009/6/1

查看许可证

This is a demonstration of how one can use PCA to classify a 2D data set. This is the simplest form of PCA but you can easily extend it to higher dimensions and you can do image classification with PCA

PCA consists of a number of steps:
- Loading the data
- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)

Note: MATLAB has a built-in PCA functions. This file shows how a PCA works

引用格式

Siamak Faridani (2026). Principal Component Analysis (PCA) in MATLAB (https://ww2.mathworks.cn/matlabcentral/fileexchange/24322-principal-component-analysis-pca-in-matlab), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2007b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息
版本 已发布 发行说明
1.0.0.0