Kabsch algorithm

版本 1.18.0.0 (2.7 KB) 作者: Ehud Schreiber
Find the rigid transformation & Least Root Mean Square distance between two paired sets of points
3.3K 次下载
更新时间 2013/7/9

查看许可证

% Find the Least Root Mean Square between two sets of N points in D dimensions
% and the rigid transformation (i.e. translation and rotation)
% to employ in order to bring one set that close to the other,
% Using the Kabsch (1976) algorithm.
% Note that the points are paired, i.e. we know which point in one set
% should be compared to a given point in the other set.
%
% References:
% 1) Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst A 1976;32:9223.
% 2) Kabsch W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst A 1978;34:8278.
% 3) http://cnx.org/content/m11608/latest/
% 4) http://en.wikipedia.org/wiki/Kabsch_algorithm
%
% We slightly generalize, allowing weights given to the points.
% Those weights are determined a priori and do not depend on the distances.
%
% We work in the convention that points are column vectors;
% some use the convention where they are row vectors instead.
%
% Input variables:
% P : a D*N matrix where P(a,i) is the a-th coordinate of the i-th point
% in the 1st representation
% Q : a D*N matrix where Q(a,i) is the a-th coordinate of the i-th point
% in the 2nd representation
% m : (Optional) a row vector of length N giving the weights, i.e. m(i) is
% the weight to be assigned to the deviation of the i-th point.
% If not supplied, we take by default the unweighted (or equal weighted)
% m(i) = 1/N.
% The weights do not have to be normalized;
% we divide by the sum to ensure sum_{i=1}^N m(i) = 1.
% The weights must be non-negative with at least one positive entry.
% Output variables:
% U : a proper orthogonal D*D matrix, representing the rotation
% r : a D-dimensional column vector, representing the translation
% lrms: the Least Root Mean Square
%
% Details:
% If p_i, q_i are the i-th point (as a D-dimensional column vector)
% in the two representations, i.e. p_i = P(:,i) etc., and for
% p_i' = U p_i + r (' does not stand for transpose!)
% we have p_i' ~ q_i, that is,
% lrms = sqrt(sum_{i=1}^N m(i) (p_i' - q_i)^2)
% is the minimal rms when going over the possible U and r.
% (assuming the weights are already normalized).
%

引用格式

Ehud Schreiber (2025). Kabsch algorithm (https://www.mathworks.com/matlabcentral/fileexchange/25746-kabsch-algorithm), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2008a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Computational Geometry 的更多信息
致谢

启发作品: Anatomy Transformation Analysis

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.18.0.0

Replaced loops by bsxfun() for efficiency,
as suggested by Daniel Pfenniger (thanks!).

1.17.0.0

24/10/2012 : corrected the check of whether a reflection is needed from
if (det(C) < 0)
to the more numerically stable
if (det(V*W') < 0)
as suggested by Andreas.

1.0.0.0