Simpson's rule for numerical integration

版本 1.5.0.0 (2.5 KB) 作者: Damien Garcia
The Simpson's rule uses parabolic arcs instead of the straight lines used in the trapezoidal rule
10.6K 次下载
更新时间 2013/5/22

查看许可证

Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.

Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM

SIMPS uses the same syntax as TRAPZ.

Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071

引用格式

Damien Garcia (2024). Simpson's rule for numerical integration (https://www.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2010a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.5.0.0

Modification in the description

1.4.0.0

Modifications in the help text

1.2.0.0

Minor modifications in the descriptions and help texts of the two functions.