Delta Sigma converter spurious tone predictor

版本 1.5.0.0 (4.0 KB) 作者: Marko Neitola
A simple analytical model that predicts DSM spurious tones with arbitrary stimulus.
1.6K 次下载
更新时间 2011/6/21

查看许可证

This file contains functions for:
- estimating the quantizer noise from DSM and
- estimating the mismatch noise from DWA-DAC.

Both (time-domain) models generate noise estimate for arbitrary input vector (dc, sinusoid, n-tone, sawtooth etc.).

Applicable to bandpass DSMs and bandpass DWA.

For simulation, DS toobox is recommended: File ID: #19

Simulink DSM/DWA model can be found in: File ID: #23079

For further information:

Neitola M & Rahkonen T (2010) A Generalized Data-Weighted Averaging Algorithm. IEEE Trans. Circuits and Systems II: Express Briefs 57(2): 115-119.

Neitola M & Rahkonen T (2010) A Qualification Approach to DAC Mismatch-Shaping Methods. IEEE Trans. Circuits and Systems II: Express Briefs 57(11): 858-862.

Neitola M & Rahkonen T (2011) Predicting and Avoiding Spurious Tones in a DWA Mismatch Shaping DAC. Accepted to IEEE Trans. Circuits and Systems II: Express Briefs.

Neitola M & Rahkonen T (2011) Compact Tone-Behavior Model for Delta-Sigma Modulator. Submitted to European conference on circuit theory and design 2011.

引用格式

Marko Neitola (2024). Delta Sigma converter spurious tone predictor (https://www.mathworks.com/matlabcentral/fileexchange/29522-delta-sigma-converter-spurious-tone-predictor), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2010a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
致谢

参考作品: Delta Sigma Toolbox

社区

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.5.0.0

Added a model for multibit DSM's mismatch shaper.
Fixed a bug in the DSM noise model.

1.2.0.0

Model accuracy improved. Removed extra material.

1.1.0.0

Added a complementing model: a simulink model of a digital Delta-Sigma modulator. The quantizer for this model is "truncation": unsigned integer ouput.

1.0.0.0