Fitting an ellipse to a given set of points

版本 1.0.0.0 (2.5 KB) 作者: Hui Ma
Ellipse fits using geometric parameters based on Levenberg-Marquardt minimization scheme.
768.0 次下载
更新时间 2011/7/6

查看许可证

The most accurate and robust fit minimizes geometric (orthogonal) distances from the observed points to the fitting curve. Our goal is to minimize the sum of squares of orthogonal distances. The Levenberg-Marquardt algorithm requires the computation of the distances and their derivatives with respect to the ellipse parameters. So this method is generated by using implicit differentiation for computing
Jacobian matrix.

Usage: [ParG,RSS,iters] = fit_ellipseLMG(XY,ParGini,LambdaIni)

Child functions:
Residuals_ellipse(from previous submission) , JmatrixLMG (included in the main function)

Input:
XY:given points<XY(i,1),XY(i,2)> i=1 to n
ParGini = [Center(1:2), Axes(1:2),Angle]'
LambdaIni: the initial value of the control parameter Lambda

Output:
ParG: parameter vector of the ellipse found
RSS: the Residual Sum of Squares (the sum of squares of the distances)
iters:# of iterations

引用格式

Hui Ma (2024). Fitting an ellipse to a given set of points (https://www.mathworks.com/matlabcentral/fileexchange/32106-fitting-an-ellipse-to-a-given-set-of-points), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2008a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Interpolation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0