Simulated Annealing Optimization

版本 1.0.0.0 (2.8 KB) 作者: Héctor Corte
This program performs simulated annealing otimization on functions of R^n in R.
3.3K 次下载
更新时间 2011/10/3

查看许可证

Simulated annealing is an optimization algorithm that skips local minimun. It uses a variation of Metropolis algorithm to perform the search of the minimun. It is recomendable to use it before another minimun search algorithm to track the global minimun instead of a local ones.

Usage: [x0,f0]sim_anl(f,x0,l,u,Mmax,TolFun)

INPUTS:
f = a function handle
x0 = a ninitial guess for the minimun
l = a lower bound for minimun
u = a upper bound for minimun
Mmax = maximun number of temperatures
TolFun = tolerancia de la función

OUTPUTS:
x0 = candidate to global minimun founded
f0 = value of function on x0

Example:

The six-hump camelback function:

camel= @(x)(4-2.1*x(1).^2+x(1).^4/3).*x(1).^2+x(1).*x(2)+4*(x(2).^2-1).*x(2).^2;

has a doble minimun at f(-0.0898,0.7126) = f(0.0898,-0.7126) = -1.0316

this code works with it as follows:

[x0,f0]=sim_anl(camel,[0,0],[-10,-10],[10,10],400)

and we get:
x0=[-0.0897 0.7126]

引用格式

Héctor Corte (2024). Simulated Annealing Optimization (https://www.mathworks.com/matlabcentral/fileexchange/33109-simulated-annealing-optimization), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2010a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Simulated Annealing 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0