Closest Approach Between the Earth and Heliocentric Objects

版本 1.2.0.0 (15.6 MB) 作者: David Eagle
MATLAB script that predicts closest approach between the Earth and heliocentric objects.
689.0 次下载
更新时间 2021/8/6

查看许可证

The cae2ho.m script uses a Runge-Kutta-Fehlberg 7(8) numerical method to numerically integrate the first-order form of the orbital equations of motion. This is a variable step size method of order 7 with an 8th order error estimate which is used to dynamically change the integration step size during the simulation. This software also uses a one-dimensional minimization algorithm due to Richard Brent to solve the close approach problem. Additional information about this numerical method can be found in the book, Algorithms for Minimization Without Derivatives, R. Brent, Prentice-Hall, 1972. As the title indicates, this algorithm does not require derivatives of the objective function. This feature is important because the analytic first derivative of many objective functions may be difficult to derive. The objective function for this program is the scalar geocentric distance of the celestial body or spacecraft.

引用格式

David Eagle (2024). Closest Approach Between the Earth and Heliocentric Objects (https://www.mathworks.com/matlabcentral/fileexchange/39270-closest-approach-between-the-earth-and-heliocentric-objects), MATLAB Central File Exchange. 检索来源 .

MATLAB 版本兼容性
创建方式 R2019b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Unit Conversions 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.2.0.0

Updated to use JPL SPICE *.bsp ephemeris files. Orbital elements data file for Apophis has been updated to the July 1, 2021 data. Fixed bug involving minimum closest approach option.

1.1.0.0

Updated fundamental transformation matrix. Also updated PDF user's manual to reflect this modification.

1.0.0.0