Object tracking with an Iterative Extended Kalman Filter (IEKF)
This is my Matlab implementation of Ted Broida's "Estimation of Object Motion
Parameters from Noisy Images." This is a very early work using Kalman Filtering to perform object tracking. The paper makes many assumptions such as the structure is known and we are given a 1D view of a 2D object, but it paved the way for future methods.
From the perspective of a new person to adaptive filtering, I believe this creates a perfect example problem to apply an IEKF because it is simple and you can concentrate on how the algorithm works. Plus the inputs to the filter have a physical meaning.
The best way to start will be by reading the .pdf file. This is the write up I did for this project and hopefully should explain how it works clearly.
Then next thing will be to simply run "CompleteSimulation.m" I tried to make the code very readable so hopefully you can just read the script.
The largest reason for submitting this to the file exchange is "f_IEKF.m" This is the function that actually implements the filter and took several days of headache to write. It isn't commented line by line, but I choose the variables to be consistent with the theory sections seen in most books. I hope it will be clear and help someone out there.
引用格式
Lucas Chavez (2024). Object tracking with an Iterative Extended Kalman Filter (IEKF) (https://www.mathworks.com/matlabcentral/fileexchange/42156-object-tracking-with-an-iterative-extended-kalman-filter-iekf), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Design > Adaptive Filters >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Code/
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 | Adding link to video on youtube that has results of code. |